In this Appendix I establish the independence of the axioms of Theorem 1, I discuss the extension to an arbitrary (finite) number of players, and I prove that the Nash solution, N, does not satisfy the axiom RSA.

1 Independence of the axioms

The midpoint solution, $m(S,d) \equiv \frac{1}{2}d + \frac{1}{2}a(S,d)$, satisfies all of the axioms from Theorem 1 but PO.\footnote{Consider the following modification of $m(S,d)$: $m^*(S,d) \equiv m(S,d) + (e,e)$, where e is the maximal number such that the aforementioned expression is in S. It is easy to check that this solution satisfies WPO, MD, IM, and RSA; it shows that PO cannot be weakened to WPO without rendering the conclusion of Theorem 1 false.} The equal loss solution, $EL(S,d) \equiv a(S,d) - (l,l)$, where l is the minimal number such that the aforementioned expression is in S, satisfies all of them but MD (this solution is due to Chun (1988)). The following solution satisfies all the axioms but RSA. Given an arbitrary (S,d), let us denote, for short, its ideal point and midpoint by a and m, respectively. Consider the following piecewise linear monotone path solution: it assigns to each (S,d) the point $P(S) \cap \{[m; (\frac{1}{2}a_1 + \frac{1}{2}m_1, m_2)] \cup [(\frac{1}{2}a_1 + \frac{1}{2}m_1, m_2)] \cup [\frac{1}{2}a_1 + \frac{1}{2}m_1, m_2])$.}
$\{m_1, m_2; a]\}$. It is easy to see that this solution satisfies PO, MD, and IM.

As an example of a solution that satisfies all the axioms but IM, consider the following bargaining solution, the *Perles-Maschler solution*, PM. This solution is defined on B_0: the class of problems $(S, d) \in B$ where $d = 0$, $S = S_d$, and $WP(S) = P(S)$. Given (S, d) as above, $PM(S, d)$ is the unique point $u \in P(S)$ that satisfies:

$$\int_{(0, a_2)}^{u} \sqrt{-d} \, dx \, dy = \int_{u}^{(a_1, 0)} \sqrt{-d} \, dx \, dy,$$

where the integrals are taken along the arcs of $\partial S = P(S)$. It is well-known that this solution satisfies PO and RSA (in fact: SA and SA*), and that it violates IM. It also satisfies MD.

2 Extension to $n \geq 3$ players

As mentioned in the paper, the model and the main result (Theorem 1) extend straightforwardly to the case of $n \geq 3$ players. However, some remarks regarding the independence of the axioms are in place. The midpoint solution and the piecewise linear monotone path solution from above have counterparts in the multi-person case. The equal-loss solution, on the other hand, may fail to exist when there are more than two players. Nevertheless, it is well-defined in the (n-person) model in which the assumption of compact feasible sets is replaced by unboundedness from below.

2The choice $d \equiv 0$ is a mere normalization; equivalently, one can consider the collection of all (S, d) with a common d and where $S = S_d$, which is simply a d-translation of the Perles-Maschler setting.

3The solution PM can be defined also for problems for which $WP(S) \neq P(S)$, but then the expression (1) needs to be amended in order to account for the possibility that the Pareto boundary contains a segment parallel to an axis. This is only a technically that I will ignore for the sake of the ease of presentation.

or free disposal. Finally, the existence of an n-person solution that satisfies all the axioms but IM is also nontrivial. Here is an example of a rich domain of 3-person problems on which such a solution exists.

Given a 3-person bargaining problem (S, d), define the set $X(S, d)$ as follows:

$$X((S, d)) \equiv \{(a, b) : (a, b, m_3(S, d)) \in S\}.$$

Consider the domain of smooth 3-person problems: those 3-person (S, d) such that $WP(S) = P(S)$, and where $P(S)$ does not contain hyperplanes; that is, for all distinct $x, y \in P(S)$ and $\alpha \in (0, 1)$, the point $\alpha x + (1 - \alpha)y$ is not in $P(S)$. Define the solution μ^* on this domain by:

$$\mu^*(S, d) \equiv (PM_1(X((S, d)), (d_1, d_2)), PM_2(X((S, d)), (d_1, d_2)), m_3(S, d)).$$

It is easy to see that this solution satisfies PO, RSA, and MD.

3 N does not satisfy RSA

Let $S = \text{conv hull}\{0, (1, 0), (0, 2)\}$ and let $T \equiv \text{conv hull}(S \cup \{(1, 1 + \epsilon)\})$, for some small $\epsilon > 0$. Let $Q \equiv \frac{1}{1+\epsilon}S + \frac{1}{1+\epsilon}T$. We have that $N(S, 0) = (\frac{1}{2}, 1)$, $N(T, 0) = (1, 1+\epsilon)$, and $N(Q, 0) = (1, 1)$. The requirement of RSA fails for player 2.

References

5In such a model, RSA needs to be amended so that “$S = S_d$” (“$T = T_d$”) is replaced by “$S =$ comprehensive hull of S_d” (“$T =$ comprehensive hull of T_d”).