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Abstract

I characterize the proportional N -person bargaining solutions by individual

rationality, translation invariance, feasible set continuity, and a new axiom—

interim improvement. The latter says that if the disagreement point d is known,

but the feasible set is not—it may be either S or T , where S ⊂ T—then there

exists a point d′ ∈ S, d′ > d, such that replacing d with d′ as the disagreement

point would not change the final bargaining outcome, no matter which feasible

set will be realized, S or T . In words, if there is uncertainty regarding a possible

expansion of the feasible set, the players can wait until it is resolved; in the

meantime, they can find a Pareto improving interim outcome to commit to—a

commitment that has no effect in case negotiations succeed, but promises higher

disagreement payoffs to all in case negotiations fail prior to the resolution of

uncertainty.
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1 Introduction

I consider Nash’s bargaining problem (due to Nash (1950)) and characterize the class

of its proportional solutions. A bargaining problem is defined as a pair (S, d) that

satisfies the following:

• A1. S ⊂ RN , d ∈ S, and there exists an x ∈ S such that x > d;1

• A2. S is compact and comprehensive.2

The set S, called the feasible set, consists of all the utility vectors that the players

can achieve via cooperation; di is player i’s utility in the event that cooperation fails,

hence d is called the disagreement point. The collection of pairs (S, d) that satisfy

A1-A2 is denoted by B; a solution is defined to be any function µ : B → RN that

satisfies µ(S, d) ∈ S for all (S, d) ∈ B. Given a vector p > 0,3 let µp(S, d) ≡ d + εp,

where ε is the maximal number such that the expression on the right hand side is

in S. A solution µ is proportional if there exists a vector p > 0 such that µ = µp.

Proportional solutions were first characterized by Kalai (1977). The egalitarian solu-

tion, E, corresponds to the special case p = 1; i.e., E ≡ µ1. The reader is referred to

Thomson (1994) for an excellent discussion of the bargaining model.

I characterize the proportional solutions by the following axioms, in the state-

ments of which (S, d), (S ′, d′), and (T, e) are arbitrary elements of B, and (Sn, d) is

an arbitrary sequence of elements of B sharing the same disagreement point.

1Vector inequalities: xRy if and only if xiRyi for all i, R ∈ {>,≥}; x 	 y if and only if x ≥ y &

x 6= y.
2The set S is comprehensive if for all x, y ∈ S that satisfy y ≤ x it follows that z ∈ S, for every

z that satisfies y ≤ z ≤ x. It is strictly comprehensive if in addition P (S) ≡ {x ∈ S|y 	 x ⇒ y /∈

S} = WP (S) ≡ {x ∈ S|y > x ⇒ y /∈ S}; that is, if its strict and weak Pareto frontiers coincide. A

bargaining problem whose S is strictly comprehensive is a strictly comprehensive bargaining problem.
30 ≡ (0, · · · , 0). Similarly, 1 ≡ (1, · · · , 1).

2



Individual Rationality (IR): µ(S, d) ≥ d.

Translation Invariance (TINV): µ(S + t, d+ t) = µ(S, d) + t for all t ∈ RN .4

Feasible Set Continuity (S.CONT): If Sn converges to S in the Hausdorff topology

and (S, d) ∈ B, then µ(S, d) = limn→∞µ(Sn, d).

Interim Improvement (II): If d = e ≡ d∗ and S ⊂ T , then there exists a d′ > d∗,

such that (S, d′), (T, d′) ∈ B, µ(S, d′) = µ(S, d∗), and µ(T, d′) = µ(T, d∗).

The first two axioms are very weak; they are satisfied by all the major solutions

considered in the literature. S.CONT is satisfied by all the continuous ones, and the

major solutions in the literature are continuous. The fourth axiom, II, captures the

following idea. Suppose that the disagreement point d is known with certainty, but

the feasible set is not—it may be either S or T , where S ⊂ T . That is, it is known

with certainty that all the options in S are feasible, but there are additional options,

those in T\S, the feasibility of which is uncertain. A natural course of action in this

case is to “wait and see”: once the uncertainty is resolved, the relevant bargaining

outcome will be implemented. However, since some time passes before the realization

of uncertainty, the players face a risk, as during this time negotiations may break

down, an event in which they end up with the low payoffs d. A natural way to insure

themselves against such an event is by signing an intermediate binding contract that

specifies their payoffs in case that the bargaining procedure breaks down prior to

the resolution of uncertainty. This, however, may be a difficult task, because if the

interim contract affects the final outcome, then the players may behave strategically,

and as a result may prefer not to sign such a contract at all. The axiom II guarantees

that this is never the case: one can always find a point d′ ∈ S with d′ > d, such that

4S + t ≡ {s+ t|s ∈ S}.
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replacing d with d′ as the disagreement point would not change the final bargaining

outcome, independent of the realization of uncertainty.5

The rest of the paper is organized as follows: Section 2 contains the main result

and Section 3 offers a discussion that consists of a sequence of subsections, each

focusing on a different aspect of that result.

2 The main result

Consider the following axioms, in the statements of which (S, d) and (T, e) are arbi-

trary elements of B, and (S, dn) is an arbitrary sequence of elements of B sharing the

same feasible set.

Weak Pareto Optimality (WPO): µ(S, d) ∈ WP (S).6

Weak Disagreement Point Continuity (W.D.CONT): If µ(S, dn) = x for all n,

dn → d and (S, d) ∈ B, then µ(S, d) = x.

Strong Individual Rationality (S.IR): µ(S, d) > d.

5Axioms concerning uncertainty regarding components of the bargaining problem have been

studied extensively in the literature. The two most notable examples are Perles and Maschler’s super

additivity (see Perles and Maschler (1981)) and Chun and Thomson’s disagreement point concavity

(see Chun and Thomson (1990)). Holding the disagreement point d fixed, the former requires a

mixture of two feasible sets, S and T , to lead to a solution point that lies above the respective mixture

of the solutions of (S, d) and (T, d); the latter imposes the analogous requirement on mixtures of

two disagreement points, when the feasible set is fixed. It is worth noting that as opposed to these

axioms, II does not assume commonly known probabilities. That is, it accommodates the case where

player i believes that the options in T\S will become available with probability pi, where pi is an

idiosyncratic (and not necessarily commonly known) value.
6A natural strengthening of this axiom is Pareto Optimality (PO), which requires µ(S, d) ∈ P (S)

for all (S, d) ∈ B.
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Independence of Non Individually Rational Alternatives (INIR): µ(S, d) =

µ(Sd, d), where Sd ≡ {x ∈ S|x ≥ d}.

Monotonicity (MON): If d = e ≡ d∗ and S ⊂ T , then µ(S, d∗) ≤ µ(T, d∗).

Step by Step Negotiations (SSN): If d = e ≡ d∗, S ⊂ T , and (T, µ(S, d∗)) ∈ B,

then µ(T, d∗) = µ(T, µ(S, d∗)).

The first axiom in the list is obvious; the second axiom is a weaker version of the

more common disagreement point continuity, which makes the same requirement, but

without the restriction to sequences of elements that give rise to the same solution

point; the third and fourth axioms, which are due to Roth (1977) and Peters (1986)

respectively,7 strengthen IR; the fifth axiom, which is due to Kalai (1977), says that

if more options become available, no one should get hurt; the sixth axiom, also due

to Kalai (1977), says that whenever the players face two nested problems with a

common disagreement point, they can first solve the smaller (and presumably simpler)

problem, and then regard its solution as the disagreement point of the “continuation

problem.”

Lemma 1. S.CONT and TINV imply W.D.CONT.

Proof. Let µ be a solution that satisfies S.CONT and TINV. Suppose that (S, dn) ∈ B

and µ(S, dn) = x for all n, dn → d and (S, d) ∈ B. By TINV, µ(S − dn,0) = x− dn.

By S.CONT, µ(S − d,0) = x− d. Applying TINV again gives µ(S, d) = x.

Let M denote the set of solutions that satisfy II, IR, TINV, and S.CONT.

Lemma 2. Every µ ∈M satisfies SSN.

7The aforementioned paper by Peters was published as a book chapter in 2010, and hence appears

with the 2010 date on the reference list.
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Proof. Let µ ∈ M. By S.CONT, it suffices to prove that SSN holds on the domain

of strictly comprehensive problems. Let (S, d), (T, d′) ∈ B be such that d′ = d,

S ⊂ T and are both strictly comprehensive, and (T, µ(S, d)) ∈ B. By Lemma 1, µ

satisfies W.D.CONT. By II and W.D.CONT, it follows that there exists a sequence

{dn} ⊂ Sd, such that µ(S, dn) = µ(S, d) and µ(T, dn) = µ(T, d) for all n; let d∗ ≡

limn→∞dn (existence of the limit follows from the compactness of Sd). I argue that

d∗ ∈ WP (S). To see this, denote by L the set of all limits of these sequences. By

the aforementioned existence argument, L 6= ∅. Define the binary relation � on L

by: l � l′ if and only if l1 > l′1. Since L ⊂ Sd and the latter is compact, there

exists a �-maximal element in the closure of L, l∗, which belongs to Sd. I argue

that l∗ ∈ WP (S). Otherwise (S, l∗) ∈ B, and therefore, by II, there exists an l′ > l∗

such that (S, l′) ∈ B, µ(S, l′) = µ(S, l∗), and µ(T, l′) = µ(T, l∗), in contradicts to

the �-maximality of l∗. Now, since S is strictly comprehensive, d∗ ∈ P (S). By IR,

dn ≤ µ(S, dn) = µ(S, d), hence d∗ ≤ µ(S, d). Since d∗ ∈ P (S), d∗ = µ(S, d). Since

(T, µ(S, d)) = (T, d∗) ∈ B, and µ(T, dn) = µ(T, d) for all n, W.D.CONT implies that

µ(T, d∗) = µ(T, d). Therefore, (T, µ(S, d)) = (T, d).

Lemma 3. Every µ ∈M satisfies WPO.

Proof. Let µ ∈M and let (S, d) ∈ B. By the argument from Lemma 2 there exists an

increasing sequence {dn} such that µ(S, dn) = µ(S, d) for all n, that converges to a

limit d∗ ∈ WP (S). By IR, dn ≤ µ(S, dn) = µ(S, d), therefore d∗ ≤ µ(S, d). Therefore,

µ(S, d) ∈ WP (S).

Lemma 4. Every µ ∈M satisfies INIR.

Proof. Let µ ∈ M and let (S, d) ∈ B. By S.CONT we may assume that S is strictly

comprehensive. Let x ≡ µ(S, d) and µ(Sd, d) ≡ y. By the arguments from Lemma

2, there exists an increasing sequence {dn} ⊂ Sd, with a limit d∗ ∈ P (Sd). By the

arguments from Lemma 2, both d∗ = x and d∗ = y, hence x = y.

Given r > 0, let ∆r ≡ {x ∈ RN+ |
∑N

i=1 xi ≤ r}.
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Lemma 5. Let µ ∈M. Then µ(∆kr,0) = kµ(∆r,0) for all r > 0 and k ∈ N.

Proof. Make the assumptions of the lemma and let r > 0. The statement of the

lemma is trivial for k = 1; I will prove that it holds for k ≥ 2 by induction.

k = 2. Here, we need to prove µ(∆2r,0) = 2µ(∆r,0). By SSN and TINV, the

left hand side equals µ(∆2r, µ(∆r,0)) = µ(∆2r−µ(∆r,0),0)+µ(∆r,0); therefore, we

need to prove µ(∆2r − µ(∆r,0),0) = µ(∆r,0). By INIR, then, it is enough to prove

that µ([∆2r − µ(∆r,0)] ∩ RN+ ,0) = µ(∆r ∩ RN+ ,0). This is indeed the case, because

by WPO [∆2r − µ(∆r,0)] ∩ RN+ = ∆r ∩ RN+ .8

The inductive step: Suppose that the lemma is true for (k − 1), where k ≥ 2.

By SSN and TINV, µ(∆kr,0) = µ(∆kr − µ(∆(k−1)r,0),0) + µ(∆(k−1)r,0). By the

induction’s hypothesis µ(∆(k−1)r,0) = (k − 1)µ(∆r,0). Therefore, we need to prove

that µ(∆kr − µ(∆(k−1)r,0),0) = µ(∆r,0). By INIR, therefore, it is enough to prove

that µ([∆kr−µ(∆(k−1)r,0)]∩RN+ ,0) = µ(∆r∩RN+ ,0). This is indeed the case, because

by WPO [∆kr − µ(∆(k−1)r,0)] ∩ RN+ = ∆r ∩ RN+ .

Lemma 6. Every µ ∈M satisfies MON.

Proof. Let µ ∈ M. By S.CONT, it suffices to prove that MON holds for strictly

comprehensive problems. Let then (S, d), (T, d) ∈ B be two strictly comprehensive

problems such that S ⊂ T . Assume by contradiction that there is some i such that

xi > yi, where x ≡ µ(S, d) and y ≡ µ(T, d). By the arguments from Lemma 2,

there exists a sequence {dn} ⊂ S such that µ(S, dn) = µ(S, d) and µ(T, dn) = µ(T, d)

for all n, and d∗ ≡ limn→∞dn ∈ WP (S) = P (S). By IR, dn ≤ x for all x, hence

d∗ ≤ x; therefore, d∗ = x. By Lemma 1, µ satisfies W.D.CONT, and therefore

y = µ(T, d) = µ(T, d∗) = µ(T, x). However, xi > yi contradicts IR.

Let pµ(r) ≡ µ(∆r,0).

8To see this set-equality, consider first x ∈ [∆2r−µ(∆r,0)]∩RN+ . We have that x+µ(∆r,0) ∈ ∆2r;

since, by WPO,
∑
i µi(∆r,0) = r it follows that

∑
i x ≤ r, which, together with the fact that

x ≥ 0 ∩ RN+ implies that x ∈ ∆r. Conversely, for x ∈ ∆r ∩ RN+ we have
∑
i xi ≤ r and therefore∑

i xi +
∑
i µi(∆r,0) ≤ 2r, so x ∈ [∆2r − µ(∆r,0)] ∩ RN+ .
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Lemma 7. Let µ ∈ M. Then pµ(.) is homogeneous of degree one. That is, pµ(r) =

rpµ(1) for every r > 0.

Proof. Let µ ∈ M and r > 0. There exists a positive integer N such that r > (1
2
)n

for all n ≥ N . For every integer n ≥ N there exists a unique integer k = k(n) such

that k(1
2
)n ≤ r ≤ (k + 1)(1

2
)n. If there is an n such that one of these inequalities is

satisfied as equality, then, by Lemma 5, we are done.9 Suppose, on the other hand,

that k(1
2
)n < r < (k+ 1)(1

2
)n for every n ≥ N . Let Sn ≡ ∆k( 1

2
)n and S+

n ≡ ∆(k+1)( 1
2
)n .

There exists an N such that r > (1
2
)n for all n ≥ N . For every integer n ≥ N there

exists a unique integer k = k(n) such that k(1
2
)n ≤ r ≤ (k + 1)(1

2
)n. If there is an n

such that one of these inequalities is satisfied as equality, then, by Lemma 5, we are

done.10 Suppose, on the other hand, that k(1
2
)n < r < (k + 1)(1

2
)n for every n ≥ N .

Let Sn ≡ ∆k( 1
2
)n and S+

n ≡ ∆(k+1)( 1
2
)n . By MON,

µ(Sn,0) ≤ pµ(r) ≤ µ(S+
n ,0). (1)

Note that µ(Sn,0) = pµ(k(1
2
)n) = kpµ((1

2
)n) = kµ(∆( 1

2
)n ,0); the first and third equal-

ities follow from the definition of pµ, and the second also involves Lemma 5. Also,

pµ(1) = µ(∆1,0) = µ(∆2n( 1
2
)n ,0) = 2nµ(∆( 1

2
)n ,0) follows from Lemma 5. Therefore,

µ(∆( 1
2
)n ,0) = (1

2
)npµ(1) for every n ≥ N . Therefore, µ(Sn,0) = k(1

2
)npµ(1). Simi-

larly, µ(S+
n ,0) = (k + 1)(1

2
)npµ(1). Plugging this into (1) gives k(1

2
)npµ(1) ≤ pµ(r) ≤

(k+1)(1
2
)npµ(1). Taking n→∞ gives rpµ(1) ≤ pµ(r) ≤ rpµ(1), so pµ(r) = rpµ(1).

9To see this, suppose that k( 1
2 )n = r. Then, on the one hand, pµ(r) = pµ(k( 1

2 )n) =

µ(∆k( 1
2 )

n ,0) = kµ(∆( 1
2 )

n ,0), where the last equality is by Lemma 5. On the other hand,

rpµ(1) = k( 1
2 )nµ(∆1,0) = k( 1

2 )nµ(∆2n( 1
2 )

n ,0) = kµ(∆( 1
2 )

n ,0), where the last equality is by Lemma

5.
10To see this, suppose that k( 1

2 )n = r. Then, on the one hand, pµ(r) = pµ(k( 1
2 )n) =

µ(∆k( 1
2 )

n ,0) = kµ(∆( 1
2 )

n ,0), where the last equality is by Lemma 5. On the other hand,

rpµ(1) = k( 1
2 )nµ(∆1,0) = k( 1

2 )nµ(∆2n( 1
2 )

n ,0) = kµ(∆( 1
2 )

n ,0), where the last equality is by Lemma

5.
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Given r > 0, let C(r) ≡ {x ∈ RN+ |x ≤ p(r)}.11

Lemma 8. Let µ ∈M and let r > 0. Then µ(C(r),0) = pµ(r).

Proof. Make the assumptions of the lemma. Assume by contradiction that x 6= pµ(r),

where x ≡ µ(C(r),0). By SSN, pµ(r) = µ(∆r, x). By II, there exists a y > x such that

(∆r, y) ∈ B and µ(∆r, y) = pµ(r). Therefore, by IR, pµ(r) ≥ y > x, in contradiction

to WPO.

Armed with the lemmas, we can turn to the main result.

Theorem 1. A solution belongs to M if and only if it is proportional.

Proof. It is clear that every proportional solution is in M. Conversely, let µ ∈ M. I

will prove that µ = µp, where p ≡ pµ(1); the combination of IR and II implies S.IR,

hence p > 0.

By S.CONT and TINV, it is enough to prove that µ coincides with µp on the

the class of strictly comprehensive bargaining problems with disagreement point 0.

Let then (S,0) be such a problem. Let r > 0 be the unique number such that

rpµ(1) = µp(S,0). Assume by contradiction that µ(S,0) 6= µp(S,0). Since µp(S,0) ∈

WP (S) = P (S), there exists an i such that µi(S,0) < µp,i(S,0) = rpµ,i(1). Let r′ < r

be such that

µi(S,0) < r′pµ,i(1). (2)

We have that µ(S,0) = µ(S, µ(C(r′),0)) ≥ µ(C(r′),0) = pµ(r′) = r′pµ(1); the first

equality is by SSN, the inequality is by IR, and the following equalities are by Lemma

8 and Lemma 7, respectively. This, of course, contradicts (2).

11A more complete notation would be “Cµ(r)” instead of “C(r).” The extra subscript is skipped

in order to make the notation a bit lighter.
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3 Discussion

3.1 Independence of the axioms

Below are four solutions, each of which violates exactly one of the axioms from The-

orem 1 and satisfies the remaining three.

1. All but IR: Consider −E(S, d) ≡ d − x · 1, where x is the maximal number such

that the right hand side is in S.

2. All but II: The Kalai-Smorodinsky solution (due to Kalai and Smorodinsky

(1975)). This solution assigns to each (S, d) ∈ B the point (1 − θ)d + θa(S, d),

where θ is the maximal number such that the aforementioned expression is in S,

where ai(S, d) ≡ max{xi|x ∈ Sd}.

3. All but TINV: Let N = 2.12 Fix an ε > 0. Let D ≡ {x ∈ R2|x1 = x2}. Denote

by B the open band of width ε around the plane’s diagonal, D; i.e., B ≡ {x ∈ R2 :

||x−D|| < ε}. Let µ̂ be the following solution,

µ̂(S, d) ≡


E(S, d) if d ∈ B

µ(2,1)(S, d) if d /∈ B and d1 > d2

µ(1,2)(S, d) if d /∈ B and d1 < d2

It is easy to see that µ̂ satisfies all the axioms of Theorem 1 besides TINV. This

solution captures the idea that the bargaining outcome may be sensitive to the out-

side options: if the outside options are sufficiently close, then the solution splits the

surplus equally; otherwise, the stronger player is being favored in terms of receiving

a larger proportion of the surplus.

12The generalization of this example to an arbitrary N is easy.
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4. All but S.CONT. Let N = 2 and consider the lexicographic extension of E, Elex,

which is defined as follows.13 For every (S, d) ∈ B there exists at most one player i

such that the i-th coordinate of E(S, d) can be increased without decreasing coordi-

nate j 6= i and without leaving S; Elex is obtained by applying the maximal payoff

increase to this i if such an i exists, and Elex = E otherwise. It is easy to see that

this solution satisfies all the axioms besides S.CONT.

Example 4 may lead one to suspect that once S.CONT is deleted from the list of

axioms from Theorem 1, a characterization of the lexicographic extensions of the

proportional solutions is obtained. This is not true; in fact, this is not true even

if PO is added to the axiom list. I conclude this subsection with an example of a

2-person solution, which is not proportional, and that satisfies PO, IR, TINV, and II.

Let S0 = {x ∈ R2
+|x21 + x22 ≤ 1} and consider the following solution,

µ̃(S, d) ≡

 (
√

1
2
,
√

1
2
) + t if there is a t such that S = S0 + t and d < (

√
1
2
,
√

1
2
) + t

Elex(S, d) otherwise

3.2 Other domains

The feasible sets are allowed to be non-convex. The are many reasons why non-

convexities may arise in bargaining. For example, the players may not have access to

a randomization device, and even if they do they may prefer not to use it, because

they may view some issues as too important to be decided on by gambling. Moreover,

it may be that the utilities in the bargaining problem are not v-N.M utilities. All the

analysis above remains equally valid if convexity is added (to A1-A2 above). In other

words, none of the arguments above invokes non-convex feasible sets.14

13The generalization to N > 2 is straightforward. This solution has been studied by Chun (1989).

The lexicographic extension of any other proportional solution µp is defined analogously.
14For further works on bargaining with non-convex feasible sets, see Anant et. al. (1990), Conley

and Wilkie (1991), Herrero (1989), Hougaard and Tvede (2003), Hougaard and Tvede (2010), Peters
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Similarly, the analysis remains valid if compactness is replaced by unboundedness

from below,15 coupled with compactness of Sd. Namely, if free disposal of utility is

allowed. The only thing that needs to be changed is Example 1, since the solution

it describes is not well-defined when the feasible set is unbounded from below. The

modification −Ẽ(S, d) ≡ E(S, d)− 1 does the job.

3.3 II vs. SSN

II and SSN share a similar flavor: both describe a “graduality” property. They are,

however, logically incomparable.

Proposition 1. SSN and II are logically incomparable.

Proof. Consider the disagreement solution µ(S, d) ≡ d. It is immediate that it satisfies

SSN and violates II. The solution Elex satisfies II but not SSN.

As the following proposition shows, the fact that S.IR is violated in the example of a

solution that satisfies SSN but violates II is not coincidental.

Proposition 2. SSN and S.IR imply II.

Proof. Let µ satisfy S.IR and SSN and let (S, d) and (T, d) be two elements of B with

S ⊂ T , who share the disagreement point d. We need to find a d′ > d such that

(S, d′) ∈ B and µ(X, d′) = µ(X, d) for both X ∈ {S, T}. Clearly we can pick a subset

Q ⊂ S such that (Q, d) ∈ B and WP (Q) ∩WP (S) = ∅. Let d′ ≡ µ(Q, d). By S.IR,

d′ > d. By SSN, µ(X, d′) = µ(X, d) for both X ∈ {S, T}.

Proposition 2 can be viewed as saying that even though SSN and II are incomparable,

the former is “almost stronger” than the latter.

and Vermeulen (2010), Serrano and Shimomura (1998), Xu and Yoshihara (2006), and Zho (1996).
15i.e., x ∈ S and y ≤ x implies y ∈ S.
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3.4 The utility space vs. the physical reality

The motivating story for II is that it refers to uncertainty, the resolution of which

reveals the feasible set, S or T . However, since the axiom (and, in fact, the entire

bargaining model) is formulated in the utility space—the aforementioned uncertainty

is only at the level of interpretation—the following critique presents itself: the axiom

can be applied to any pair of problems with a common disagreement point, even

ones that have nothing to do with one another in terms of the underlying bargaining

process. This is certainly a legitimate criticism, but it applies equally to any axiom

that refers to the underlying bargaining process (SSN, for example); II, in this respect,

is not special.

3.5 Contingent contracts

Why do the players need to sign a contract that updates the disagreement point? If

contracts are allowed, why not sign a contingent contract (i.e., a pair of contracts)

that specifies one agreement for the event that S is realized and another agreement for

the event that T is realized? The response to this question is threefold. First, nothing

in II excludes the possibility of such contingent contracts; II, however, says that they

are not necessary for the characterization of the proportional solutions. Secondly,

in terms of practicality, contingent contracts may be complicated and costly, while

agreements about the default outcome may be less complicated. Thirdly, contingent

contracts are executed after the resolution of uncertainty—they do not offer the ex

ante protection regarding what happens if negotiations break down prior to that

resolution, which is precisely the protection offered by II.

3.6 Early agreements

Related to the previous subsection is the fact that II and contingent contracts alike

involve taking action prior to the resolution of some uncertainty. Such early action
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has a solid place in the existing literature; in particular, there is extensive reference

in the literature to early agreements. Both Myerson (1981) and Perles and Maschler

(1981) express its desirability axiomatically: the former’s concavity and the latters’

super additivity demand that “mixing” two feasible sets should result in a feasible set

whose solution-point dominates the mixture of the solution-points of the mixed sets.

Consequently, no one should be hurt by early agreement.

II is of a different nature. Whereas the aforementioned axioms express the benefits

of early agreements, in II there are no benefits: the improvement, measured by the

difference d∗− d′, is only realized if negotiations break down—an event that does not

occur. Additionally, as opposed to the aforementioned axioms, II does not assume

expected utility (see subsection 3.2 above).

3.7 The strength of II

II is a strong axiom. One may criticize it on the basis that it is too strong. I believe

that such criticism would be unjustified. First, the “too strong” claim can be made

towards many of the axioms in the mainstream bargaining literature: Myerson’s

concavity, Perles and Maschler’s super additivity, and Kalai’s monotonicity are all

examples in place. Secondly, II’s strength can be viewed as a blessing, not as a curse:

one may draw the conclusion that the property which is described by this axiom is the

defining feature of the proportional solutions. This conclusion, I believe, is especially

appealing when viewed in light of the extreme weakness of the other axioms which

are involved in Theorem 1.

3.8 Relaxing II

In light of the strength of II, one may seek ways to weaken it. One way to do so is

to restrict the axiom to situations where S = T ; that is, to situations where there

is no uncertainty regarding the feasible set, and the whole bite of the axiom is that

it guarantees the existence of a better disagreement point that does not change the
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final outcome. The resulting axiom is extremely weak; in particular, it is satisfied by

all the major solutions from the literature. Additionally, such a weak version is less

interesting at the level of interpretation: if there is no need to wait for the resolution

of uncertainty, then the risk of negotiation breakdown—which is the motivation for

signing the interim contract from II—does not even present itself.

An alternative weakening of II is to replace its strict inequality by a weak one.

Namely, to demand from the interim disagreement point to satisfy only d′ 	 d∗, not

d′ > d∗. Call the resulting axiom weak interim improvement (W.II). Replacing II

by W.II in Theorem 1 results in a characterization of the solutions of the form µp

for p 	 0. In particular, this class of solutions includes the dictatorial solutions.

Formally, the i-th dictatorial solution, Di, is given by Di(S, d) ≡ (ai(S, d), d−i). The

exclusion of dictatorship when W.II is strengthened to II is not a mere technicality,

but, as we will see in the subsection below, has a significant economic content.

3.9 Interpersonal utility comparisons

The central philosophical idea that the proportional solutions express is that of inter-

personal utility comparisons. The alternative idea, of interpersonal incomparability,

when stated axiomatically, goes as follows.

Independence of Equivalent Utility Representations (IEUR): If λ : RN → RN

is a positive affine transformation, then µ(λ ◦ S, λ ◦ d) = λ ◦ µ(S, d).16,17

That II captures the essence of the proportional solutions (see subsection 3.7 above)

receives further support, in form of the following result.

Proposition 3. There does not exist a solution that satisfies II, INIR, and IEUR.

16λ = (λ1, · · · , λN ) is a positive affine transformation if the following holds for each i: λi(x) =

αix+ βi, where αi > 0.
17TINV is obtained as a special case of this axiom, where α1 = α2 = · · · = αN = 1.
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Proof. For simplicity, I prove the result for N = 2. Assume by contradiction that

there exists a solution that satisfies the three axioms. Let R = {x ∈ R2
+|x ≤ (1, 1)}

and let R′ = {x ∈ R2
+|x ≤ (2, 1)}. By II, there exists a point (a, b) > 0, such that

replacing 0 with (a, b) will not change the outcome in either of the problems (R,0)

and (R′,0). Applying IEUR and INIR to the problems (R,0) and (R, (a, b)), we

see that (a, b) must satisfy 1−b
1−a = 1. Applying the same argument to (R′,0) and

(R′, (a, b)), we conclude that 1−b
1−a = 2, a contradiction.

This result emphasizes that the difference between II and W.II is indeed not trivial.

The latter, as opposed to the former, is consistent with the combination of IEUR

and INIR. For example, the dictatorial solutions satisfy W.II, IEUR, and INIR. This

may lead one to suspect that the combination of these three axioms results in a

characterization of the dictatorial solutions. As the following 2-person example shows,

this is not the case.

µ∗(S, d) ≡

 x if x is the unique kink in the relative interior of WP (Sd)

D1(S, d) otherwise

It is easy to see that µ∗ satisfies W.II, IEUR, and INIR.
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