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1.  Introduction


This paper presents an explicit solution of an investment problem. This solution is used to present the comparative statics of uncertainty on the timing and size of investment in a model with time-to-build. It can therefore be viewed as a generalization of recent literature on investment. The literature gives specific predictions about the timing of investment, but generally refrains from analyzing the size of investment.
 Our goal here is to present a unified analysis of both the timing and level of investment in an investment model with four realistic properties of investment. It is irreversible, uncertain, can be delayed, and requires time-to-build.


 We adopt a model of a firm that chooses capacity to minimize the present value of expected costs in the face of stochastic demand. As such the model lends itself naturally to the analysis of both time and size of investment. The paper is closely related to Manne (1961), whose seminal work applies inventories model to the analysis of investment. Economies of scale in investment result in lumpy capacity additions according to the well-known trigger-target (s,S) rule of the inventory literature. (For the sake of concreteness, we observe that this firm, which relies only on its capacity decision as a strategic control, resembles an electrical utility.   We exploit this analogy later in the paper.)
 


We find an explicit analytic solution to the continuous-time, impulse-control problem faced by the firm when it takes time to build capacity. Time-to-build complicates the problem significantly relative to the case of no lag since the state vector includes the sizes and the starting dates of all facilities under construction, in addition to installed capacity, the only state variable with no lag. We first prove an intuitive result: the optimal investment policy is only a function of total "committed capacity", that is installed capacity and the capacity additions still in process of completion. This allows us to find explicitly the optimal timing and size of investments, given any combination of facilities being built.


Numerical simulations are easily performed using the analytic solution. We adopt parameter values broadly descriptive of the electric utility industry, and focus on the implications of uncertainty and construction lags with benchmark times-to-build of one and eight years. For the former case we reproduce the standard result that investment is postponed with increased uncertainty. In this case we find also that the optimal plant size rises with uncertainty, yielding ambiguous result regarding the capital stock. For the latter case the investment plan is not only much less sensitive to uncertainty, but for plausible parameter values the results are actually reversed: investment is slightly advanced while the plant size shrinks. We derive also analytically a certainty equivalence result that states that when the investment lag is longer than a certain threshold and when the discount rate is zero, the investment plan (both timing and size) in a stochastic framework is identical to the deterministic plan. Hence, even if the general solution, although in closed-form, is quite cumbersome, a benchmark solution is very simple.


Other papers that analyze the effect of time-to-build on the timing of investment are Majd and Pindyck (1987) and Bar-Ilan and Strange (1996). The latter adopts a standard model of irreversible investment under uncertainty and derives a result similar to ours regarding the effect of uncertainty on the timing of investment. The richer model used here allows us not only to analyze both the timing and level of investment, but to evaluate quantitatively the critical economic factors involved. The most important, in addition to the certainty equivalence result, are the analysis of the expected capital stock and the cost. For instance, it is natural to infer from the solution the shadow price of reduced uncertainty or shortened time-to-build.


The structure of the paper is as follows. The formulation of the control problem is in Section 2, while Section 3 presents a theorem that allows us to derive the dynamic programming equation in Section 4. Section 5 presents the solution for the optimal investment policy, and we use it in Section 6 to derive comparative static results. Section 7 concludes.  Formal proofs are relegated to the appendices. Figures and Tables are at the bottom of the paper.

2. Formulation of the Problem

The supplier of a non-storable product faces a stochastic demand that has to be met by production. The firm cannot respond to changing demand conditions by a suitably flexible pricing policy; its only decisions involve determining the most efficient productive capacity to satisfy demand in an uncertain environment. It takes a constant time h ( 0 to build the additional capacity, that is, an investment project started at time t will be completed at time t + h ( t. The installation costs, C(), that result from a capacity increment of size  ( 0, are assumed to be paid  upfront at the start of the project and take the following form,


(1)
C() = 
[image: image223.wmf]
where k ( 0 is a fixed cost and c ( 0 is the cost per unit of additional capacity. Once additional capital is installed, it lasts forever.
  


At any point in time, the difference between the existing production capabilities and current demand gives the amount of excess capacity, 
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f(y) = 
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where p and q are nonnegative parameters. The coefficient q is the instantaneous cost of holding an unutilized unit of capacity. Similarly, p is the shortage cost per unit of unsatisfied excess demand.
  


With no time-to-build the system at time t = 0 is characterized by a single state variable, the excess capacity at that time, x.  However, when h > 0 a description of the system requires also reference to all the investments i , (i= 1,...,n), that have been started but have not yet been completed, and their corresponding starting times,i.  Thus, the state of the system is given by the vector (x,) where
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 and -h <1 <2 < ... < n < 0.  (This ordering convention implies that the oldest capacity expansion project 1 will be completed at time 1 + h, and it is the first among the n projects under construction at time t = 0 to become on-line.)


Time-to-build creates a "pipeline" of projects in process of completion and might affect the evolution of excess capacity.  To stress this, we denote by 
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 the excess capacity at any time t ( 0 when the state was (x,) at t = 0. The dynamics of 
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 is given by the following stochastic differential equation:


(3)
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The parameter g>0 is the expected rate of demand growth,  is a nonnegative parameter, W(t) is a Wiener process and (.) denotes the Dirac delta function.
  The term with the Dirac function in equation (3) accounts for capacity i installed at times i + h and for the capacity i installed at times 
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 to denote all investments started after t = 0.  With the demand process represented by 
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 in (3), the assumption of a constant price implies that the firm's revenue follows the diffusion process of demand.  This is in line with other models of investment under uncertainty. 


Let U(x,) denote the minimum expected cost attained by the optimal investment program when the firm is in state (x,) at time t = 0 and (3) describes the evolution of excess capacity.  It is defined as 


(4)
U(x,)  
[image: image12.wmf]= 

inf 

q 

i 

, 

h 

i 

( 

) 

i 

³ 

1 

E 

f 

y 

( 

x 

, 

Y 

) 

t 

( 

) 

[ 

] 

0 

¥ 

ò 

e 

- 

a 

t 

dt

ì 

í 

î 

+ 

C 

h 

i 

( 

) 

e 

- 

a 

q 

i 

i 

³ 

1 

å 

ü 

ý 

þ 


where E denotes expectation and   is the discount rate.
  The control variables for the firm are the investments i > 0 and the corresponding starting times 
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3.  Characterization of the Solution

We start by presenting a theorem that will allow us to find the optimal control 
[image: image14.wmf]q 

i 

, 

h 

i 

( 

) 

i 

³ 

1 

 and the value function U(x,).


Theorem 1: The optimal control 
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Proof: See Appendix 1.


Theorem 1 states that the timing and the size of the optimally chosen capacity additions depend only on the sum of the already installed capacity and all the units under construction; whether a certain investment has just been started or has already been completed is of no consequence for subsequent investment decisions. The intuition is as follows. Any investment decision taken at time t cannot be on-line before time t+h. At that time all investment projects under construction at time t will be at the same stage, on-line. The total amount of capacity, whether already completed or under construction, is therefore the relevant state variable regarding future investment. This intuitive theorem extends therefore to continuous time the discrete time result of Scarf (1960) in inventory control theory. In accordance with the literature on electricity generation, we will refer to 
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 as "committed capacity".


Relaxing few of the underlying assumptions will change Theorem 1 as follows. For a finite life, each unit of capital, whether on-line or under construction, should be weighed by its age. A theorem similar to Theorem 1 will apply to to the weighted average of the capital stock. Introducing partial reversibility by allowing construction to stop before completion implies that committed capacity X is an upper bound to the capacity at time t+h. It is bounded from below by x. Finally, consider the case of a competitive equilibrium. A version of theorem 1, with committed capacity extending to overall capacity within the industry, still holds. 


The theorem also demonstrates that the minimized costs U(x,) for two firms with identical committed capacity X differ only by the expected cost of holding excess capacity during the period (0,h). We introduce the shorthand notation 
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 for the value function when the "pipeline" of unfinished projects is empty.  Since U(x,) and 
[image: image19.wmf]u 

X 

( 

) 

 differ only by the first integral on the right-hand side of equation (5), we have
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where 
[image: image21.wmf]X 

º 

x 

+ 

x 

i 

i 

= 

1 

n 

å 

, and the processes 
[image: image22.wmf]y 

x 

, 

Y 

( 

) 

t 

( 

) 

 and 
[image: image23.wmf]y 

X 

, 

Æ 

( 

) 

t 

( 

) 

, 0 ( t < h, solve the differential equation (3) with different initial conditions. The integration in (5) is straightforward because f(.) as given in equation (2) is piecewise linear and the additions to capacity up to time h are known at t=0.
  Thus, according to (5) the optimal cost U(x,) can be expressed readily in terms of the optimal cost 
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4.  The Dynamic Programming Equation

Theorem 1 establishes that the optimal sequence of controls 
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 depends only on committed capacity X at t = 0, and that the expected costs during (0,h) are sunk. With equation (5) linking U(x,), the optimal costs with n pending projects, and 
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, the cost with no capacity expansions under construction, we can focus on the latter in order to find the optimal controls.  


The solution to the firm's impulse control problem can be obtained as the solution to a Quasi-Variational Inequality (Q.V.I.) by using the dynamic programming method.
 The derivation of the Q.V.I. goes as follows. At each point in time, starting at time t = 0 when the state is given by excess capacity x, the firm can take one of two actions; either to undertake a capacity expansion at once, or postpone it at least infinitesimal time . If it chooses to postpone investment, it must be true that


(6)
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The first term on the right-hand side of equation (6) is the expected cost of holding excess capacity over the period (0,).  The second term is the minimum expected cost from time onas implied by the Principle of Optimality. Using Ito's Lemma, we obtain


(7)
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When the firm, on the other hand, chooses to undertake a capacity expansion 
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 right away, it must be true that
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with 
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 representing a capacity expansion of size ( started at t = 0.  The relation (5) allows expressing 
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In (9) we have exploited the fact that 
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 and 0 ( t < h, because the excess capacity over the period (0,h) is unaffected by the existence of projects just started and that will be on-line only at t = h. 


Since one of the two actions must be optimal, either equation (7) or (8) holds as equality. Hence 
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 is the solution to the  Q.V.I.
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where the operators A and M are defined by


(11)
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(12)    
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Expression (12) is obtained by substituting (9) into equation (8).

5.  The Solution

The solution to the Q.V.I. (10) and to the firm's control problem consists of the value function 
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. We start by assuming the existence of two critical levels of excess capacity, s and S, such that: 1) 
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 is started, otherwise no capacity expansion is undertaken.)  The optimality of the (s,S) rule is proved in Scarf (1960) for h(0 in discrete time, a result extended to continuous time for h=0 by Constantinides and Richard (1978). For the case of no gestation lags (h=0) the optimal (s,S) policy and the value function 
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 are computed in Sulem (1986) and Bar-Ilan (1990b). In the presence of time-to-build they are found as follows.   


Given the (s,S) rule, we construct a function 
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 that satisfies (10) and the regularity conditions of Theorem A.1 presented in Appendix 2. By uniqueness of such solution this is the value function sought. Appendix 2 presents the details of this derivation. It shows that, depending on the parameters of the problems, 
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, the solution to (10) differs across two regimes, [A] and [B].  Regime [A] is characterized by 
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for x ( s,

where the parameters 1> 0 and 2< 0 are defined as
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Under case [A] the optimal policy (s,S) is the solution to the algebraic equations:
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and for x ( 0, 
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 is given by equation (15).

In regime [B] the optimal (s,S) rule is given by the solution to the system:


(22)

[image: image73.wmf]S 

= 

qe

- 

a 

h 

+ 

a 

c 

( 

) 

- 

1 

a 

c 

- 

pe

- 

a 

h 

( 

) 

s 

+ 

p 

+ 

q 

( 

) 

ghe 

- 

a 

h 

- 

p 

+ 

q 

l 

2 

e 

- 

a 

s 

/ 

g 

- 

e 

- 

a 

h 

( 

) 

ì 

í 

î 

- 

a 

k 

ü 

ý 

þ 



(23)

[image: image74.wmf](

)

(

)

(

)

{

}

.

1

1

/

1

s

g

s

h

h

S

e

e

q

p

pe

c

c

qe

e

l

a

a

a

l

a

a

-

-

-

-

+

+

-

+

=



As said before, which of the two regimes is optimal depends on the underlying parameters. This is shown by the following theorem, whose proof is also in Appendix 2:

[image: image1.wmf]0 

k 

+ 

c 

x 

ì 

í 

î 

for 

x 

= 

0 

for 

x 

> 

0 


Theorem 2:
When 
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The parameters M(0) and N(0) are defined as

(24)
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Theorem 2 can be explained intuitively as follows. When there is no time-to-build, the case analyzed below, there is only one regime, regime [A], where s(0. The reason for the trigger s being nonpositive is that when the excess capacity is zero it is optimal not to invest right away but to wait, at least for a while. The saving on the cost of investment is larger than the shortage cost for very small negative excess capacity (unless p
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With time-to-build, the firm might start the process of investment when the excess capacity is positive.  This is regime [B], where s ( 0.  Note that even in this regime the planned expected excess capacity when construction ends, s-gh, is negative.  Although the firm finds it optimal to have sometimes negative excess capacity, it has to start construction when the excess capacity is still positive.


Theorem 2 implies that the subset of parameters that supports regime [B] is as follows.  First, the investment cost should be small. Delaying the investment saves on interest that can be characterized by 
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 and on the number of projects, with saving rising with k.  Hence when c and k are small, ceteris paribus, the firm will invest earlier and might be in regime [B].  Similarly, when p/q is large the relatively large cost of negative excess capacity pushes toward regime [B]. Obviously, large values of gh push s upward toward [B]. And last, large values of the parameter 
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 that measures uncertainty also tend to support this regime.     

We turn now to some special cases of the general solution given above.

Zero Time-to-Build


Substituting h=0 in equations (24) and (25) yields 
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.  In this case s ( 0 and the optimal (s,S) policy admits a unique solution if and only if 
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. When p( c the shortage cost per unit of capacity is smaller or equal to the flow cost of unit of capital.  In this case it is never optimal to invest, that is s 
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   The optimal policy is given by the solution to the system,


(26)
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which is the same system as in Sulem (1986) and Bar-Ilan (1990b).

Deterministic Demand


Substituting  = 0 for a deterministic demand, it is straightforward to see that the systems (18) - (19) for s ( 0 and (22) - (23) for s ( 0 are identical. Hence the optimal trigger and target points (s,S) solve


(28)
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Zero Discount Rate

We consider now the case of zero discount rate and the corresponding cost parameter  
The variable  represents the minimum average cost per time unit with no discounting of future costs


(30)      
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Although zero rate is usually not a realistic assumption, it can serve as an approximation for low rates. Moreover, the assumption of a vanishing discount rate simplifies the analysis considerably since the average cost is independent of the state vector (x,), unlike the cost function U(x,). This means that both the initial excess capacity and the plants under construction are of no consequence when considering infinite horizons with no discounting.  As a result, the sensitivity analysis of the cost with respect to parameter perturbations is facilitated greatly, as we shall see in the next section and in Figures 3-5. With the help of Appendix 3, the solution takes the following form:
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s = gh + 
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The optimal average cost  is


(32)

[image: image105.wmf]m 

= 

cg

+ 

q 

s 

2 

2 

g 

+ 

q 

S 

- 

gh

( 

) 

.

(ii)
When, however,  
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, then s ( 0 and the solution for s and S is given by the system
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The corresponding average cost  is still given by equation (32).


If, in addition to a zero discount rate ( = 0), the demand is deterministic ( = 0), the solution for s and S is given by (31), and the minimized flow cost is 
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) defines the optimal policy in the deterministic model with zero discount rate and no gestation lags (h = 0).

6.  Analysis of the Solution

The previous sections present the analytic solution for the optimal investment path. This allows us to study the effects on the timing and size of the investment of the various parameters, in particular of uncertainty and time-to-build. 


Consider first the case of deterministic demand and zero discount rate.  In this case time-to-build should have no effect on the economic variables or the optimal cost.  It is easy to see that this is indeed the case.  The trigger s and the target S, given by equation (31), increase by gh relative to (
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) of the h = 0 case. This means that the firm advances the start of the investment project by h  time periods. But actual production capacity moves in a sawtooth pattern between 
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) pattern of the Baumol-Tobin model of money demand when overdrafts are allowed, as in Bar-Ilan (1990b). Excess capacity is uniformly distributed between 
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We turn now to the stochastic case and consider four predictions of recent investment models. We distinguish between two situations, one corresponding to a relatively short construction lag, and another involving a much longer lag. While the first scenario corresponds to recent models of irreversible investment under uncertainty, the presence of long gestation lags reverses the results of these models.


The first prediction of modern investment theory, for example Dixit (1989), is that uncertainty delays investment. A firm considers investing in a technology that generates a constant stream of production. The output price evolves stochastically.  Comparing firms with different degrees of underlying uncertainty, it is shown that greater uncertainty raises the price that triggers investment. In a comparative dynamics sense, the one of two otherwise identical firms that operates in a more uncertain environment (other things being equal) ends up investing, on average, later. In our model this result takes the form of a reduction of the trigger level s under more uncertainty.  Starting from any level of committed capacity X ( s, the expected value of the first-passage time to the barrier s  (interpreted as the expected delay until the starting of a new plant) is 
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, (i=1,2), is the trigger level that corresponds to the standard deviation 
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 of the excess capacity process.


The second conventional result is that uncertainty increases "inertia". In the standard model this is because greater uncertainty raises the price that triggers investment and reduces the price that induces abandonment. The "range of optimal inaction", therefore, widens. In our model this range is represented by the plant size (S - s). Using again the formula for mean first-passage time, the expected interval between consecutive investments is 
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.  If the standard result holds generically, this should rise with uncertainty.  Note that here the issue of inertia is closely related to the size of investment, while nothing of this sort exists in the standard model.


The third issue is whether uncertainty depresses investment activity. Earlier models, like Hartman (1972) and Abel (1983), found that uncertainty raises investment. Recent literature, summarized in Dixit and Pindyck (1994), has shown that uncertainty lowers investment. Caballero (1991) discusses some of the properties that distinguish the two brands of models. In general, factors that limit the flexibility of the firm to adjust to changing market conditions lower investment in the face of uncertainty. These factors are irreversibility and other costs of adjusting output or inputs, inability to invest gradually in stages, decreasing returns to scale, and imperfect competition. In our model, capacity additions follow demand in the long run. Thus, the long run rate of investment is g, the mean growth rate of demand
 and, on average, gh units of capacity are under construction at any point in time.


Although plant additions follow demand in the long run, the expected long run capacity may differ across firms. Two otherwise identical firms may be out of synchrony in their investment activity because of the different uncertainty they face. The firm that lags will show less installed capacity. From results in Bar-Ilan (1990b), Appendix 2, the expected value of the ergodic distribution (
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Uncertainty affects the expected ergodic capital stock (35) indirectly by changing the trigger and target points S and s.  It also affects E(y) directly because the optimal investment policy involves only one trigger.
  The probability of finding the excess capacity in the neighborhood of the level S -gh increases therefore with uncertainty because the distribution of excess capacity is unbounded from above. This direct effect is captured by the term 
[image: image130.wmf]s 

2 

/ 

2 

g 

 in (35).


An additional prediction of conventional investment theory is that investment is highly sensitive to the intensity of uncertainty (Dixit and Pindyck (1994), pp. 153-154).  We study the validity of this claim by evaluating the response of S and s to varying  for different values of the construction period h.  Finally, although we have just seen that in our framework investment follows demand in the long run, the capital stock, as given by the mean of the ergodic distribution for excess capacity, can nonetheless vary with the construction lag. We exploit this fact in analyzing the effect of investment lags on the capital stock.


For a crisper analysis we calibrate the model and fix benchmark values for the parameters.  The example on which we focus captures several stylized features of investment in electricity generating facilities.  The unit capital cost c is chosen as 1000 dollars per kilowatt (kW) of electric power, p = .25c = 250 $/(kW
[image: image131.wmf]× 

year), and q = .1c = 100 $/(kW
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year).  The fixed cost is k = 100 million dollars, the discount rate  = 5% per year, the average annual increase in electricity demand is chosen as g = 350 Mw/year, and a typical construction time of a generating facility is h = 8 years. Consider now the effect of different gestation lags.

Case 1:  h = 1 year.  


We start with the case of a very short construction time of one year. Figure 1 and Table 1 present the trigger level s, the target S and the plant size (S-s) as a function of the standard deviation,  all measured in megawatts (MW)

           The first observation is that the trigger point s falls with uncertainty; that is, uncertainty delays investment.  When  rises from 10 to 450 Mw, s falls from (approximately) -70 to -440 Mw, which implies that a construction of a new plant will be delayed, on average, by one year (370/350 of one year).


The second observation is that uncertainty monotonically raises the plant size, S-s.  In our framework this implies enhanced intertia, as measured by the expected time period between consecutive investments, (S-s)/g.  On average a new plant will be built every 1270/350 = 3.6 years for = 450 Mw, and every 920/350 = 2.6 years for 10 MwThe main response of a firm to increased uncertainty is to delay its investment, i.e. there is a significant drop of s. But when the investment does take place the target capacity S is only mildly lowered by the increased uncertainty. This implies that the firm uses a larger plant size to compensate for the delayed starting date of construction. The combined impact of uncertainty on the timing and level of investment implies therefore ambiguity with respect to the capital stock.


Plugging the appropriate values of s and S in equation (35) we find that the expected excess capacity rises from 43.74 Mw for =10 Mw to 133.30 Mw when =450 Mw.  More uncertainty increases the expected capital stock in the long run because of the second term in (35) as discussed earlier. The trigger and target points fall with uncertainty in a way that 
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 decreases from 43.60 Mw in the case of =10 Mw to -150.98 Mw for =450 Mw.

Case 2:  h = 8 years.


Figure 2 and Table 2 show the optimal trigger and target levels in Mw for a construction time of eight years, a conservative number for the electric power industry.  The results are very different from the h=1 case. All the graphs in Figure 2 exhibit opposite slopes to the corresponding graphs in Figure 1. Thus the trigger point s increases with ; a firm facing a more uncertain demand optimally advances the start of a new investment project, although moderately so.  Secondly, although the plant size (S-s) is virtually constant, the slight drop in this variable indicates smaller size and less inertia with more uncertainty.

Thirdly, time-to-build reduces significantly the firm's sensitivity to uncertainty as measured by the slopes of the graphs in Figure 2. In particular, the trigger level s and the plant size (S - s) change very little with sigma. The picture for longer lags, up to fifteen years, is very similar. The slopes of S, s, and S-s increase with h, and the increase is very mild. The standard result that in a comparative dynamics sense investment is highly sensitive to uncertainty ceases to hold when lags are long.


Equation (35) gives the ergodic excess capacity E(y): it rises from -19.85 Mw when = 10 to 291.71 Mw for = 450. Higher uncertainty increases the first term in (35), 
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, from -19.99 Mw to 2.43 Mw. Hence uncertainty increases the long run capital stock, as measured by the expected excess capacity, for both h = 1 and h = 8. But the increase is much larger in the latter case, because the direct and indirect effects reinforce each other: more uncertainty calls for an increase in the trigger and target points and this adds to the direct effect of higher 
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We conclude that with relatively long construction times, the recent results concerning investment under uncertainty might be reversed. It is possible that increased demand volatility leads to accelerated investment, less inertia and sensitivity in the firm's decision-making, and more production capacity. This can be explained as follows.  


When h=0 the firm is concerned with the possibility of unexpectedly large unused capital, but not with the possibility of capital shortage.  Since investment is irreversible, when demand turns out to be lower than expected, the firm will be "stuck" with unwanted excess capacity.  On the other hand, when expectations are exceeded, the firm can meet the unexpected demand by immediately installing the additional required capital. Hence uncertainty, by increasing the probability of having unused capital, delays investment, as in Figure 1. To partially offset the delay, the plant size increases.


This asymmetry in the effect of uncertainty disappears with time-to-build. The firm loses its complete control in the event of a capital shortage.  When demand is higher than expected, the best response is to build a new production facility earlier than initially planned.  However, because of the construction lag, the excess capacity might drop below its minimum planned level s-gh. Only when h=0 excess capacity cannot fall below s and capital shortages are of no concern to the firm.  When h>0 the firm has to delay its investment to limit possible losses due to unused capacity. But in order to contain the risk of capacity shortage, it is optimal to advance investment. Uncertainty has two offsetting effects, and it can lead to a postponement or an acceleration of investment, depending on parameter values. These conflicting influences explain why both timing and size of investment become less sensitive to uncertainty with long investment lags. The possibility of capacity shortage is the reason for a greater expected capacity under the same circumstances.


Time-to-build has therefore an effect similar to that of preemption on the investment decision. Both imply that the firm is willing to take risks in committing capacity, either because of the lag or to preempt entry. The similar consequences of investment lags and strategic considerations like preemption are an interesting implication of our model.


We have examined also how the perturbations in p, the shortage penalty rate, and g, the growth rate of demand, affect the optimal investment policy.  Keeping all other parameters as in the base case, we increased p from 250 to 500 $/(kW
[image: image137.wmf]× 

year). As expected, this change advanced the timing of investment and increased the plant size and the capital stock, since both s and S rise (by approximately 300 Mw and 100 Mw, respectively, when the time-to-build is eight years.) When purchases from "neighbors" in order to satisfy excess demand become more expensive, the electric utility will invest vigorously and hold more production capacity. More generally, high value attached to customers’ satisfaction or to market share, translated into a large p, will enhance investment.  Finally, doubling the mean demand growth from g=350 Mw to g=700 Mw has the obvious implications of reducing s-gh and increasing S-gh so that the optimal plant size increases (from 1092 to 1550 Mw for h=8 years.) At the same time the frequency of building the (larger) plants also increases since (S-s)/g falls (a plant is built, on average, every 2.2 years instead of every 3.1 years for g=350 Mw).  Changing p and g, while keeping h=8, does not change the general picture of Figure 2 and the qualitative effects of uncertainty on investment.

Zero Discount Rate
Figures 3, 4 and 5 present the results for the same parameter values used earlier (g=350 Mw, c=1000 $/kW, p=250 $/(kW
[image: image138.wmf]× 

year), q=100 $/(kW
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year), k = $108), but with no discounting (=0).  

Figure 3 confirms the previous observations based on Figures 1 and 2. For short times-to-build (six months in Figure 3), the traditional predictions of investment theory hold: investment is highly sensitive to uncertainty, which delays it and adds to the inertia.  However, when the construction time is longer, this is not necessarily true. In fact, for h=8 years the trigger s and the target S are independent of , and investment decisions are not at all affected by the degree of uncertainty.
  The two opposing tendencies to delay and to advance the timing of capacity expansions just offset each other in this case.


Recall from Section 5 that, when 
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, the solution for s(0 and S is given by equation (31); when the inequality is reversed, the solution satisfies (33)-(34) and s(0.  With our parameters the critical value of h that distinguishes the two regions is h=0.808 years.
  Hence, the line labeled h = 8 in Figure 3 represents in fact any value of h larger than 0.808 of one year. So, even for relatively short times-to-build, the standard predictions fail to hold.  It is interesting to note that in this case the solution is basically identical to the one offered by the simple deterministic Baumol-Tobin analysis although the framework is stochastic and allows for construction lags. This is an important result, which can be restated as a corollary:

Corollary 1 (Certainty Equivalence): When the discount rate  goes to zero and the construction lag h satisfies h ( h* ={2kq/[pg(p+q)]}1/2 then the investment plan is not a function of uncertainty.

 
A conclusion from the numerical solution presented in Figures 1 and 2 is a drastic decrease in the sensitivity of investment to uncertainty when the time-to-build is long. When  we prove a stronger, somewhat surprising analytical result of certainty equivalence that holds in a fairly complicated stochastic framework. Except for this result holds for all parameter values that satisfy the condition that h is larger than the critical level h*. For example, our benchmark parameter values give h*=0.808 years. Reducing p to a value p=q=100 $/ (kW.year) raises h* to h*=1.69 years. Lowering p further to p = 0.1q = 10 $/(kW.year) increases the critical lag to h*=7.21 years. Hence even if the shortage cost is significantly below the cost of excess capacity, certainty equivalence probably holds for investment in power generation when the real interest rate is low.


This can be explained as follows. Without discounting the firm is concerned with accumulated cost, and the timing of these costs is of no consequence.  The firm thus tries to balance the losses from idle capacity and capacity shortage. When h=0 or small, increased uncertainty implies that excess capacity will persist around (or above) its upper expected level, S-gh.  As mentioned earlier, a similar effect around s-gh is weaker. In order to balance the higher cost of excess capacity the firm responds to the increased uncertainty by lowering s and S.  This partially offsets the higher cost of excess capacity (by lowering S) and increases the shortage cost (lower s) to correspond to the higher cost of idle capacity. This asymmetry disappears when gh is large.  More uncertainty can push excess capacity both above S-gh and below s-gh.  The optimal policy is exactly to balance the cost of idle capacity and capacity shortage such that -p(s-gh) = q(S-gh) = (2gkpq/(p+q))1/2. Similarly, when the discount rate is positive it is possible to obtain nonstandard results similar to Figure 2, even when p < q.



 A few other results should be discussed. First, notice by comparing Figures 1, 2 and 3 the decrease in investment as the discount rate rises, reflected in lower expected capacity boundaries s-gh and S-gh with a higher discount rate. Hence, average capacity given by (35) falls with more rapid discounting. 


Another point worth emphasizing is that in an uncertain environment, a longer time-to-build can raise the capital stock.  This is demonstrated in Figure 4 which presents the relation between time-to-build and expected ergodic capacity.  The figure shows the expected levels of installed capacity y from equation (35) as a function of  for h equal to 6 months and h equal to 8 years (or, indeed, any h > 0.808 years.)  As we have seen before, uncertainty increases expected capacity more when gestation lags are longer.  Moreover, a longer time-to-build raises the expected capital stock, for any given uncertainty intensity.


Figure 5a depicts the optimal average cost  as a function of  for two benchmark values of h, six months and eight years. Uncertainty is costly to the firm since it makes extreme values of excess capacity more likely. For instance, for h = 8 years raising from 10 to 450 Mw increases the average annual cost by 7% or close to $30 million; the corresponding numbers for h = 0.5 years are 5% and $23 million. Figure 5b illustrates a related effect: time-to-build is costly, too, the more so the larger is demand uncertainty. Hence, the price that the firm is willing to pay for shortening the construction period increases significantly with uncertainty. This price is virtually zero for low levels of sigma, but it increases to $12 million a year for cutting the construction time from 0.8 years to zero when =350 (with annual coefficient of variation of 100%.)
  

7.  Concluding Remarks.

By focusing on time-to-build and on both timing and level of investment, this paper aims at bringing an important element of realism into the theory of investment under uncertainty. 


For the sake of simplicity and tractability we have adopted a few simplifying assumptions. First, the firm refrains from an active pricing policy. Although this is not inconsistent with the actual operation of electric utilities
, a more general treatment would allow for the optimal use of prices to contain possible shortages or surpluses of capacity. For example, the firm could act as if the mean growth rate of demand is negatively affected by the price, or by implementing appropriate price changes whenever the cumulative unexpected demand growth exits a certain range. Unfortunately, both generalizations render the analysis technically unwieldy because Theorem 1 ceases to hold. We can, nonetheless, assess heuristically the likely impact of such extensions. The first pricing strategy involves using prices to speed up the elimination of extreme levels of excess capacity that, as a result, become less costly to the firm. This enhances inertia in investment activity. By managing the unexpected fluctuations in demand, the second policy would have the same qualitative effects as a reduction of the degree of uncertainty in our model.  


Other simplifying assumptions are infinite life of capital and inability to stop construction once started. Relaxing these assumptions is possible at computational cost. It is straightforward, though, to predict the qualitative effects of these modifications. Shorter life of capital and the ability to postpone projects under construction imply that investment is more reversible and thus less vulnerable to uncertainty. Figures like Figure 2 will be obtained for a wider range of parameters. Similarly, as long as there are returns to scale in construction technology which make investment lumpy, the exact specification of cost functions does not change the nature of the solution.


The fundamental lesson we have derived remains, therefore, valid: with time-to-build uncertainty concerning future revenues and costs does not necessarily affect adversely the timing and size of investment and the capital stock. 


Appendix 1

We present here the proof of Theorem 1. Start by writing the minimum cost (4) as


(A.1)
U(x,) = E 
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Notice that the costs of holding excess capacity during the time period (0,h), given by the first integral in (A.1), are sunk costs because of the construction lag h and thus stand outside the infimum.  The excess capacity 
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 at time t > h is obtained by integrating equation (3) on (0,t).  This yields


(A.2)
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where 
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 and D(t) is the cumulative demand growth during (0,t) 


(A.3)
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For t > h  the process 
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 that realizes the infimum in equation (A.1) depends only on the process 
[image: image154.wmf]y 

( 

x 

, 

Y 

) 

t 

( 

) 

 for t > h.  Consequently it is solely a function of 
[image: image155.wmf]X 

º 

x 

+ 

x 

i 

i 

= 

1 

n 

å 

 and not of the past starting times 
[image: image156.wmf]t 

i 

, 

i 

= 

1 

, 

. 

. 

. 

, 

n 

( 

) 

, as claimed in Theorem 1.

Appendix 2

This appendix details the derivation of the solution presented in section 5. General issues of existence, uniqueness and regularity of solutions to the Q.V.I.'s associated with impulse control problems are treated in Bensoussan and Lions (1982), Lions (1983), Perthame (1985), and Sulem (1993).  Sulem (1993) in Sections 2.3 and 2.4 presents the following results:


Theorem A.1:    There exists a unique, continuously differentiable function that grows at most linearly which solves the Q.V.I. (10).  This is the value function.  Moreover, there exists an optimal control.

In order to obtain the solution to the Q.V.I. (10) start by assuming that the (s,S) rule is optimal. This implies that the excess capacity state space is partitioned into two regions: the continuation set 
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 where the system evolves freely according to the equation 
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, which corresponds to states in which an investment is being started.


In the complement of the continuation set, when x ( s the firm starts to build a plant of size 
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(A.4)
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Since 
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 given by (2) is piecewise linear, the integration of (A.4) is straightforward.  (See footnote 8.)


In the continuation set, when x>s, 
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(A.5)
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The first terms in (A.5) and (A.6) are particular solutions.  The constants 
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 and are determined by the boundary conditions. The roots 1> 0 and 2< 0 of the characteristic equation 
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         Assume initially that s(0. Complete characterization of the solution requires six conditions to find the values of the six unknowns 
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Finally, there is the transversality condition for 
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which implies that 
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Assume now that s > 0.  In this case the solution in the continuation set is given by (A.5) and there are only four unknowns to be found: 
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 The four conditions that allow for their solution are the value-matching and smooth-pasting conditions at x = s , together with (A.7) and (A.8).  The corresponding solution defines regime [B] in equations (20) - (23).


To fully characterize the solution, we still have to specify under what circumstances either regime [A] or regime [B] is optimal. This is done by Theorem 2. We briefly outline its proof, which is similar to the proof of Theorem 3.1 in Sulem (1986).  


Define the following functions

(A.9)
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(A.11)
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Using this notation, the system (22) - (23) can be written as

(A.12)
F(s) = 0.

The derivative 
[image: image189.wmf]dF

dx

 is


(A.13)

[image: image190.wmf]dF

dx

= 

l 

1 

e 

l 

1 

x 

qe

- 

a 

h 

+ 

a 

c 

( 

) 

- 

1 

dM

x 

( 

) 

dx

e 

l 

1 

M 

x 

( 

) 

- 

x 

( 

) 

- 

1 

[ 

] 

. 


Given this derivative, it is a straightforward task to verify that there exists a solution of equation (A.14) such that  0 ( s ( gh and S = M(s) ( gh , if and only if


(A.14)
F(0) (0,  and


(A.15)
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This proves the first part of Theorem 2. Suppose now that equations (A.14) and (A.15) do not both hold. In this case the system (22)-(23) has no solution, and we have to consider the system (18) - (19) with solutions such that s ( 0 and S ( gh.  Proceeding as above, define the following functions

(A.16)
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(A.17)
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(A.18)
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Suppose that (A.15) does not hold.  This implies that 
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Suppose now that F(0) < 0 and 
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 has a unique solution s ( 0.  Since we have found a solution to the Q.V.I. (10) that satisfies the regularity conditions of Theorem A.1, it is the unique solution. This completes the proof of Theorem 2.

Appendix 3

As usual in control theory, when the discount rate 
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 vanishes the asymptotic behavior of 
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 is related to the optimal ergodic cost (see Harrison (1985), p.29, and Robin (1983).)  More precisely, we claim:


Proposition A.1:  When the discount rate   goes to zero, the optimal cost u(x), given by the solution to the Q.V.I. (10), behaves like   
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The function V(x), defined up to an additive constant, satisfies 
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with the operator A* defined as

        
(A.20)
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and M defined by equation (12).


Proof:  See Bar-Ilan and Sulem (1995).
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� EMBED Equation.3  ���
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�In the words of Hubbard (1994, p. 1828) , "[t]he new view models, while offering a rigorous description of threshold q values for investment...do not offer specific predictions about the level of investment."


�About 10% of gross non-residential investment in the U.S. is in electric power generation (Joskow and Schmalensee (1983), p.3, and Economic Report of the President (1992, Table B52)). Manne (1961) mentions other types of investment to which the model is applicable: infrastructures, telephone networks, pipelines, and others.


� Both assumptions that C(� EMBED Equation.3  ��� is paid upfront and that the capital lasts forever imply that investment is an irreversible action. This assumption is relaxed when the capital has finite life either because of depreciation or expiration of patent that induces entry. Similarly, when C(� EMBED Equation.3  ��� is paid in installments during construction, as in Majd and Pindyck (1987), the decision to invest is partly reversible by abandoning construction midstream and saving part of the planned cost. The assumption of irreversibility implies usually that firms are reluctant to invest when facing uncertainty. It is interesting to note that one of our results is that uncertainty does not depress investment when the construction lag is long. Assuming partial reversibility will strengthen this result. 


�As long as C(� EMBED Equation.3  ��� is (weakly) concave and f(y) is (weakly) convex, the nature of the solution does not change. For instance, Manne (1961) assumes that C(� EMBED Equation.3  ��� =� EMBED Equation.3  ���, 0<a<1, and f(y) as in (2), and therefore his solution is similar to ours. The critical parameter here is the fixed cost k that makes C(� EMBED Equation.3  ��� weakly concave and implies returns to scale in construction technology that make a policy of large and infrequent orders optimal. 


�For a definition of the Dirac function, or the unit impulse, see Bar-Ilan (1990b).


�Strictly speaking we adopt the assumption of risk neutrality, a common assumption in the theory of real investment. The simplest way to allow for risk aversion would be to replace � EMBED Equation.3  ��� by the appropriate risk-adjusted rate from a capital asset pricing model. See Dixit (1989) and Dixit and Pindyck (1994), ch. 6.� EMBED Equation.3  ���  


�MacRae (1989), p.23, writes that "committed projects are added to existing capacity in the respective years that they are completed.  This measure of existing plus committed productive potential (referred to as "committed capacity") is then compared to the required capacity associated with... the demand.  The difference between the two provides a measure of the estimated surplus or deficit in generating capacity." 


�Hence �embed Equation.3 ��� and �embed Equation.3 ��� with�embed Equation.3 ���


�The formulation of the Q.V.I., due to Bensoussan and Lions (1982), is an application of Bellman's Principle of Optimality.


� Constantinides and Richard (1978), p. 627, discuss this condition in the context of cash management.


�See Cox and Miller (1965), pp.221-222.  When g<0 our solution is virtually intact with the trigger level s satisfying s>S. 


�This is just another way of stating that the expected first-passage time is (S - s)/g.


�We denote the long run excess capacity by y rather than �embed Equation.3 ��� since it is not a function of the initial state when t goes to infinity.


� The ergodic distribution of excess capacity y, whose expected value is given by (35), can be derived from results in Bar-Ilan (1990b) and Sheppe (1979).


� This is because disinvestment is not allowed.  The optimal policy with disinvestment is a four-number policy, with two triggers and two targets.  See Bar-Ilan (1990a) for a formal analysis. 


�A few comments to justify the values used to calibrate the model. The value for c is broadly consistent with Baughman et al. (1979), table D.7.  For the three main types of power plants (coal, oil, and nuclear ) the figures for 1990 are 1082, 957 and 1323 $/kw, respectively.  For natural gas plants and gas turbines the capital cost is 676 and 341 $/kw, respectively.  The value of p is from MacRae (1989), p.70:  "A 1986/1987 survey... showed that utilities are typically paying $200-$300 per kilowatt for avoided peak demand, roughly one-tenth to one-half of the cost of new generating capacity."  The value of q = .1c represents maintenance cost of unused units. Our parameterization of k  implies that the cost �embed Equation.3 ��� of a typical power plant of 1000 megawatt (Mw) is $1.1 billion, of which $.1 billion is the fixed cost.  The chosen benchmark value of g  is the average increase in demand for the electricity company of British Columbia, B.C. Hydro.  See MacRae (1989), p.22. Finally, as MacRae's figures on p.42 indicate, eight years is a lower bound for most types of electricity generating facilities once the time needed to satisfy the regulatory process is taken into account.


� The standard deviation is normally stated in percentage terms. This is the case when uncertainty regarding prices or asset values is defined as a geometric process. Uncertainty is introduced here in equation (3) as an arithmetic process for excess capacity. This implies identical units for capacity and standard deviation.


�The optimal cost does rise with uncertainty, as in Figure 5a.


�For  > 0 this critical level depends on .


�It is easy to verify that this remains true when  is greater than zero and we control for the deterministic effect of different lags; for a given construction cost, a longer gestation lag implies a higher cost in present value terms.


�We present here the cost for the  = 0 case since , unlike U, is not a function of the state vector (x,). Notice also that the minimum average cost  does not change with an h larger than the critical level of 0.808 years (Figure 5b). This is not true anymore when  > 0.


�MacRae (1989, p. 8) writes: "utilities [do] not take a proactive approach to managing electric demand, but rather simply accept their duty as one of supplying whatever demand exist within [their] service area, in light of the prevailing price structure and regulatory regime."�
�



�See Bar-Ilan (1990b), Appendix 1, for a similar derivation.
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