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Abstract

We introduce the first family of district compactness measures that
can incorporate a wide range of internal geographic features. The mea-
sures in this family are the probability that a district contains an admis-
sible path between a randomly selected pair of people. The measure can
account for roads, travel time, political boundaries, and prior districts.
This family of measures includes the path-based measure of Chambers
and Miller (2010).

1 Introduction

Two hundred years ago, legislators discovered that the ultimate composition of
a legislature is not independent of the means through which district boundaries
are drawn. Hoping to stave off unemployment, legislators learned to master
the art of gerrymandering : carefully drawing district boundaries to increase
their electoral chances and political power. Although quickly recognized as a
danger, the gerrymander has been hard to kill. It has survived to this day as
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an endless source of study for academics and as a constant target of political
reformers.

Scholars and practitioners have proposed a number of methods to mea-
sure gerrymandering. Among the most prominent of these are measures of
compactness, which assign a real number to each geographic district, or dis-
tricting plan; the idea being that a lower number corresponds to a more heavily
gerrymandered district. Existing measures take into account the shape and,
occasionally, the population of the districts. As a simplification, all ignore ge-
ographic features internal to the districts, such as mountain ranges and county
boundaries.

However, there is a gap between the measures of compactness, on one
hand, and the redistricting reality, on the other. These internal geographic
features are not ignored by those responsible for drawing the actual district
lines. Such features are often invoked as a justification for oddly shaped dis-
tricts, whether for legitimate reasons or as an excuse. As a practical matter,
the laws of forty-four states require districting plans to respect pre-existing
political subdivisions, such as counties, municipalities, and voting precincts.

To bridge this gap, we introduce a new class of path-based compactness
measures. As a special case, this class includes the path-based measure devel-
oped by Chambers and Miller (2010). To our knowledge, these are the first
compactness measures that can incorporate a wide range of internal geographic
features. While our primary focus is on the geographic aspects of redistricting,
we note that our approach may also be used to analyze other justifications for
oddly shaped districts, including the requirement in some states to preserve
the cores of prior districts.

1.1 Compactness Measures

In the past fifty years, a wide array of methods have been proposed to measure
district compactness. Roughly speaking, these methods can be separated into
three classes, dispersion, perimeter, and bizarreness measures.

Dispersion measures assess the extent to which a district is spread out
over a large area. These include (i) comparing the length of the district to
its width (Harris, 1964)1 (ii) comparing the area of the district to the area
of the smallest circle containing the district (Reock, 1961), and (iii) making
comparisons based off of the district’s center of gravity (Boyce and Clark, 1964;

1See also Iowa Code § 42.4 (2009).
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Kaiser, 1966). These last two approaches can be adapted to account for the
distribution of the district’s population (Hofeller and Grofman, 1990; Weaver
and Hess, 1963).

There have also been attempts to measure entire districting plans instead
of individual districts. In particular, Papayanopoulos (1973) proposed sum-
ming the distances between all pairs of individuals contained within the same
district.2 These districting plan measures have intuitive appeal in that redis-
tricters must choose between districting plans and do not choose individual
districts in isolation. In this context, Fryer and Holden (2011) argue that it
may be misleading to study the choice of a single district without considering
other districts affected by the plan.

However, all districting-plan measures suffer from the scale-invariance prob-
lems identified by Young (1988). Districting-plan measures may also be of
limited value in legal cases where the appropriate unit for analysis is the indi-
vidual district, as is the case with claims arising under Section 2 of the Voting
Rights Act. In cases in which the courts would analyze an entire districting
plan (e.g. Georgia v. Ashcroft, 539 U.S. 461 (2003), involving a retrogression
claim brought under Section 5 of the Voting Rights Act), we advocate using,
as the measure of the districting plan, the score of the least-compact district
in the state. This approach measures the districting plan as a function of the
individual district scores and combines the advantages of a districting-plan
measure with those of a scale-invariant district-specific measure.3 For more on
districting-plan measures, see Chambers and Miller (2010).

Perimeter measures use the length of district boundaries as a proxy for
compactness. The most common such measure compares the length of the
district perimeter to the square-root of its area (Schwartzberg, 1966; Cox,
1927; Weaver and Hess, 1963; Polsby and Popper, 1991). The state of Col-
orado measures entire districting-plans by summing the length of all district
boundaries.4

2For a more recent proposal that sums the squares of the distances, see Fryer and Holden
(2011).

3The districting-plan measures proposed by Papayanopoulos (1973) and Fryer and
Holden (2011) work in a similar away, in that they are formed by calculating a score for
each district (e.g. the sum of all pairwise distances between individuals in the district), and
then these scores are summed over all districts. In the case of Fryer and Holden (2011),
the resulting number is then multiplied by a constant—the inverse of the score of the most
compact feasible districting plan—so that the optimal plan has a measure of one).

4See Colo. Const. Art. V., Section 47.
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Bizarreness measures use the mathematical concept of convexity to describe
nice districts. A district is convex if a rubber band will fit snugly around
its border. Squares, triangles, and circles are convex; hourglasses, crescent
moons, and stars are not. Taylor (1973) measures convexity by comparing the
number of inward-bending angles on the district’s perimeter to the number
of outward-bending angles. (A convex shape has no inward bending angles.)
Chambers and Miller (2010) look at whether the shortest path connecting two
individuals remains within the district. (The shortest path will always remain
inside a convex district.)

Serious flaws have been found in most of these approaches. We will not de-
scribe all of the problems here. Instead, we will focus on one serious limitation
of all existing methods. For an in-depth review of existing compactness mea-
sures, see surveys by Young (1988), Niemi, Grofman, Carlucci, and Hofeller
(1990), Altman (1998), and Chambers and Miller (2010).

1.2 Internal Geographic Constraints

A major limitation of existing district compactness measures is that none are
able to account for the presence of geographic features such as mountain ranges
and county lines. Until recently, no district measures were able to incorporate
state boundaries. The first such measure was introduced by Chambers and
Miller (2010). This measure is the first under which a district is not penalized
because it was drawn to satisfy the obvious constitutional requirement that it
remain within the state.5

We introduce a new family of measures which can account for exogenous
internal geographic features, both physical (e.g. mountains, lakes, rivers, and
roads) and political (e.g. county, municipal, and precinct boundaries). This
family of measures can also incorporate some political concerns relevant to
gerrymandering, such as the requirement in some states to preserve the cores
of prior districts. This new family of measures includes the original path-based

5The ability to incorporate state-boundaries in a compactness measure is necessary if one
wishes to make comparisons either (i) between districts in different states or (ii) between
districts in different areas of the same state. Without such a measure, one cannot use a
precedent regarding a district in one state (e.g. North Carolina) to determine the legality
of a contested district in a different state (e.g. Texas). Similarly, two potential districts in
the same state which are not similarly affected by the state’s boundaries would otherwise
be incomparable. In this case, a districting-plan measure based off of the individual district
scores would not be meaningful.
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measure of Chambers and Miller (2010) as a special case.
The original path-based measure of Chambers and Miller (2010) is simple

to explain. Because there are several variants, we shall focus on the popula-
tion weighted measure which takes exogenous state boundaries into account.
To compute the measure, pick any pair of residents in a district, and find the
shortest path between them, distance-wise, which remains in the state. The
path-based measure is the probability that, if we select residents uniformly
and at random, the shortest path between them is contained entirely within
the district. An example is shown in Figure 1: Nevada’s Second Congressional
District contains the shortest paths in the state between the towns of Paradise
and Bunkerville, and between Bunkerville and Laughlin, but not between Par-
adise and Laughlin.

Bunkerville

Paradise

Laughlin

Arizona

Nevada

Figure 1: Nevada 2nd Congressional District, 109th Congress

The shortest path computed by Chambers and Miller (2010) was distance-
based. Of course, two people on opposite sides of the Grand Canyon may
be close in terms of distance, but very far in terms of difficulty of travel. To
account for this problem, we aim to generalize this notion of the shortest path.
The shortest path between two people on opposite sides of the Grand Canyon
may be a path that goes around it.
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To this end, we introduce a notion of an admissible path. An admissible
path is a path between two points that is objectively determined, according to
some method, to be a path of minimal cost.6 Examples of classes of admissible
paths include, but are not limited to, (i) minimal distance paths following roads
and (ii) minimal paths induced by some metric — such as travel time. Classes
can also be defined to take into account pre-existing political subdivisions
(such as county, municipal, and precinct boundaries). Our measure, then, is
the probability that a district contains an admissible path between a randomly
selected pair of people. This measure assigns to each district a score between
zero and one, with scores closer to one representing more compact districts.

1.3 Districting Principles

Individuals charged with the task of redrawing legislative district lines are the
servants of many masters. State laws impose various restrictions, often vague
and at times contradictory, such as that districts be compact and contiguous,
or respect county boundaries, or preserve communities of interest. The Voting
Rights Act of 1965 requires that districting plans may not have the purpose or
effect of denying or abridging the right to vote on account of race or color.”7

In addition, the Equal Protection Clause of the Fourteenth Amendment to
the U.S. Constitution has been held to require strict scrutiny when redistrict-
ing legislation “is so extremely irregular on its face that it rationally can be
viewed only as an effort to segregate the races for purposes of voting, without
regard for traditional districting principles and without sufficiently compelling
justification.”8 We will explain several districting principles, including com-
pactness, preservation of political subdivisions, and preservation of cores of
prior districts, and will analyze the extent to which our proposed family of
measures can account for these principles.

We emphasize that our argument is theoretical, and not empirical. Our aim
is to show that we have a theoretically sound tool for measuring compliance
with these legally mandated principles. While several examples from existing
districts are provided for illustration (Figures 1–4),9 such examples are of
limited value in evaluating the measure. Districts would presumably change

6There may be more than one admissible path.
7Voting Rights Act of 1965, Public Law 89-110, 42 U.S.C. §1973–1973aa-6.
8Shaw v. Reno, 509 U.S. 630, at 642 (1993).
9The districts in these examples were chosen because they provide clear illustrations of

the specific features of the measure that we wish to discuss.
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if a different measure (or set of measures) was used. We expect that use of
the measures described in this paper would affect the district compactness
scores substantially in some states and much less so in others. In these latter
states, low scores might indicate that otherwise oddly-shaped districts cannot
be defended using this approach.

First and foremost among these principles is legislative district compact-
ness. There are many different concepts of compactness, centered around
ideas of dispersion, long perimeter, and bizarreness. Our family of measures
can clearly be used to measure compactness—as noted above, it includes the
path-based measure introduced by Chambers and Miller (2010), which identi-
fies bizarrely shaped districts.

This compactness measure can be modified to incorporate several types
of geographical constraints using the notion of admissible paths. We will
describe two such possibilities here. First, we can define the set of paths
to be the existing network of roads, and declare a path between two people
to be admissible if it is the shortest road between them. Second, we can
choose the shortest path using travel time as opposed to physical length. In
both cases, readily available mapping software can be used to determine the
shortest paths. In principle, other existing measures can also be redefined in
this way, including those proposed by Papayanopoulos (1973) and Fryer and
Holden (2011).

The road-based or travel time-based measures may lead to a new inter-
pretation of “freeway districts”, such as the proposed North Carolina Twelfth
Congressional District struck down by the Supreme Court in Shaw v. Reno.10

Approximately 160 miles long, the district followed much of U.S. Interstate
85 for much of its length, picking up communities of voters adjacent to the
freeway along the way. A freeway district may, in fact, contain the shortest
paths (in terms of time-travel) between many of its residents.11

Alabama’s Sixth and Seventh Congressional Districts are shown in Fig-
ure 2. The Seventh district connects Birmingham, Alabama’s largest city, to
points further south and west by means of a narrow corridor that contains
U.S. Interstate 20. The shortest paths in terms of travel time are shown be-

10Shaw v. Reno, 509 U.S. 630 (1993).
11The district invalidated in Shaw v. Reno would be unlikely to receive a high score; as

it did not follow the freeway for all its length, and it did contain all of the freeway. As
the court noted “Northbound and southbound drivers on I-85 sometimes find themselves in
separate districts in one county, only to ‘trade’ districts when they enter the next county.”
509 U.S. 630, at 636.
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tween Birmingham and a number of cities and towns in other parts of the
district.12 All of these paths remain in the district, even though the straight
lines connecting Birmingham to these places would cross into other districts.
As a result, the Seventh district would likely be considered more compact were
the travel time metric to be used.

Birmingham

7th District

6th District

Figure 2: Alabama 6th and 7th Congressional Districts, 109th Congress

The inclusion of Birmingham through this narrow corridor comes at a cost.
Often, the fastest way to travel between points in the Sixth district is through
the freeways in this corridor. As a result, the Sixth district would be consid-
ered relatively non-compact. There are two lessons. First, when evaluating a
districting plan, it is important to consider the scores of all districts. Second,
if a freeway is used to connect people in distant parts of the state, then the

12The shortest paths in terms of travel time were calculated using Google Earth, available
at http://www.google.com/
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score of another district may suffer. Residents of the other district may also
use the freeway as part of their shortest path.

The road-based or travel time-based measures may also lead to a new
interpretation of “bridge and tunnel” districts such as Maryland’s Second and
Third Congressional Districts, connected respectively by the Fort McHenry
Tunnel and the Francis Scott Key Bridge. It may be faster to go over or under
a bay than to travel around it.13

A second principle is that legislative districts should, to the extent possible,
preserve pre-existing political subdivisions. The laws of forty-four of the fifty
states contain provisions requiring redistricters to preserve county, municipal,
and precinct boundaries when redrawing the district lines. (NCSL, 2009)
The simplest solution is to declare a path admissible if it is the shortest path
remaining entirely within the county, city, or voting precinct. This leads to the
possibility, of course, that there may be multiple admissible paths—one could
define both the shortest path in the state and the shortest in the county to be
admissible paths, depending on the objectives. Figure 3 shows Arkansas’ Third
Congressional District. The irregular borders on the north east and southern
portions of the district (shown in bold) follow the county boundaries.

Figure 3: Arkansas 3rd Congressional District, 109th Congress

13We note, however, while it may be possible to construct compact “bridge and tunnel”
districts under a road-based metric, neither of these Maryland districts would be considered
compact by such a measure. Both districts are extremely bizarre even if the roads are taken
into account.
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A third principle is that districting plans should preserve the cores of prior
districts. The new district should be as similar as possible to the former
district. This objective can be achieved by declaring a path between two
points to be admissible if it was the shortest path in the previous district or,
if the two points were not in the same district, if it is the shortest path in
the state. The method would allow districts to be similar to the previous
districts (regardless of their intrinsic shape) while limiting the ability of the
redistricters to gerrymander.

For example, consider Alabama’s First Congressional District, shown in
Figure 4. After the 2000 Census, the First district decreased in terms of area
because of a relative decline in population. The revised district is almost
entirely contained within the original district, but has a more bizarre shape.
One can see that the odd shape of the revision can not readily be justified by
the claim that the district was drawn to preserve the core of the prior district.
The newer district does not contain the shortest path between Fulton and
Buena Vista in the older district.

Buena Vista
Fulton

107th Congress

108th Congress

Figure 4: Alabama 1st Congressional District, before and after redistricting

Other principles include compliance with the Voting Rights Act of 1965,
preserving “communities of interest”, and the contradictory goals of protecting
incumbents and increasing the competitiveness of elections. These objectives
are strictly political in nature and can not be accounted for using a compact-
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ness measure.14

2 The Admissible Path Measure

A state Z is a compact subset of R2 which has a path-connected interior and is
the closure of its interior.15 A district K is simply a closed subset of Z which
has a path-connected interior, and which is the closure of its interior. The set
of all possible districts in Z will be denoted KZ . For x, y ∈ Z, let PZ(x, y)

14In general, the question of whether a districting plan violates the Voting Rights Act of
1965 (whether it has the effect of denying members of a protected minority group the right
to participate in the political process) is judged with other tools. For example, the number
of majority-minority seats is often used as a proxy for minority voting power. However,
while a compactness measure will not tell us whether a voting plan complies with the act,
we may be able to evaluate seemingly odd-shaped districts to check whether compliance
with the Act is merely an excuse to gerrymander.

Implicit within the Voting Rights Act is the idea that there is a group of minority voters
with similar interests who should be kept together in a single district. Our model could
be generalized so that one could define all paths between members of this group to be
admissible; the resulting measure describes how gerrymandered the district is with respect
to non-members of the group. One could use a similar approach to measure gerrymandering
with respect to members of the group. If the former is substantially more gerrymandered
than the latter, this may indicate a significant amount of gerrymandering not directly caused
by the desire to keep members of this minority group together. A high score, of course, will
not necessarily protect the district from claims under the Equal Protection Clause of the
Fourteenth Amendment. We do not address the question of whether such an approach is
plausible—it seems unlikely that a court would use only non-minorities to see whether a
district is gerrymandered—but we simply note that there are a variety of measures which
can be constructed depending on the specific interpretation of the Voting Rights Act.

While using this approach, it is important to pick the minority group appropriately.
Following recent the Supreme Court decisions in League of United Latin American Citizens
v. Perry, 548 U.S. 399 (2006), it might not be appropriate to define all paths between
members of a minority group to be admissible, at least in a state as large as Texas. On
the other hand, it might be appropriate to define a path as admissible if it is between two
members of the group and is less than forty miles in length.

The principle that plans preserve “communities of interest” is similar. This vague concept
means that it is legitimate to draw legislative district lines to protect certain political inter-
ests. In principle these may be interests of any group, not necessarily a protected racial or
ethnic minority. For example, one might define all paths between orthodox Jews in Williams-
burg, New York, to be admissible. See United Jewish Organizations of Williamsburgh, Inc.
v. Carey, 430 U.S. 144 (1977).

15Compactness is with respect to the Euclidean topology and does not refer to political
compactness.
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denote the set of continuous paths16 g : [0, 1] → Z for which g (0) = x and
g (1) = y. For all x, y ∈ Z distinct, associate a set AZ(x, y) ⊂ PZ(x, y) of
admissible paths. We will show how to define the set of admissible paths as
described in the paper.

2.0.1 The minimal distance path

The simplest example of a set of admissible paths is the set of minimal distance
paths used by Chambers and Miller (2010). For a pair x, y ∈ Z, this is
the set of all paths minimizing distance between x and y while remaining in
Z. Suppose that d (x, y) represents the Euclidean distance between x and
y. Formally, given a path g we may define the length of path g as follows.
Let k ∈ N, and consider any collection of points t ∈ [0, 1]k for which for
all i, ti ≤ ti+1. Define lt (g) =

∑k−1
i=1 d (g(ti), g(ti+1)). Then define l (g) =

supk∈N sup{t∈[0,1]k:ti≤ti+1} lt (g). We now define AZ(x, y) ≡ {g ∈ PZ(x, y) :

l (g) ≤ l (h) for all h ∈ PZ(x, y)}. This set of admissible paths corresponds to
the shortest paths in terms of Euclidean distance.

2.0.2 The road based paths

This next example is similar, except in that it relies on an existing infrastruc-
ture of roads. Formally, we may define RZ(x, y) ⊂ PZ(x, y) to be a set of
roads connecting households located at x and y. (For this example to make
sense, it must be the case that every residence lies on some road.17) We then
define the set of admissible paths to be AZ(x, y) ≡ {g ∈ RZ(x, y) : l (g) ≤
l (h) for all h ∈ RZ(x, y)}. This example captures the possibility of measur-
ing difficulty of travel by length of the shortest road between the two points,
rather than the Euclidean distance between them.

2.0.3 The shortest-time paths

In this example, we suppose that d : Z × Z → R is a function specifying the
travel time between any pair of points, as opposed to the geographic distance.
It may be that one need not travel by road, and instead can travel by ferry,

16Continuity here is defined with respect to the Euclidean topology induced on Z.
17We also implicitly assume that all pairs of residences are connected by roads contained

within the state. For cases in which this may be unrealistic, it is possible to include standard
transportation paths, such as ferry and airplane routes.
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train, etc. We recommend that travel times be computed with respect to
the same vehicle. These statistics are readily available; for example, Google
Maps18 specifies approximate travel times between any pair of residences in
the United States. As in the distance minimizing case, we define lt (g) =∑k−1

i=1 d (g(ti), g(ti+1)). Then we define l (g) = supk∈N sup{t∈[0,1]k:ti≤ti+1} lt (g).

We now define AZ(x, y) ≡ {g ∈ PZ(x, y) : l (g) ≤ l (h) for all h ∈ PZ(x, y)}.
The metric d can represent some other relevant quantity besides travel times;
indeed, it can be altogether arbitrary.19

2.0.4 Pre-existing political subdivisions

The laws of forty-four of the fifty states favor districting plans which keep
intact pre-existing political subdivisions, such as counties, cities, and vot-
ing precincts. We can favor plans fulfilling this requirement by declaring
the shortest paths within the political entity to be admissible. For a path
g ∈ PZ(x, y), define l(g) as above (either using the minimal distance, travel
time, or arbitrary metric). Let S be a set of subsets of KZ representing the set
of political subdivisions which should preferably be kept intact. For a given
political subdivision S ∈ S, let PS(x, y) ≡ {g ∈ PZ(x, y) : g([0, 1]) ∈ S} be
the set of paths contained within the political subdivision. Define AS(x, y) ≡
{g ∈ PS(x, y) : l (g) ≤ l (h) for all h ∈ PS(x, y)} as the set of shortest paths
in the political subdivision. Let A∗Z(x, y) ⊂ PZ(x, y) be a set of admissi-
ble paths chosen by some method, such as in the prior examples.20 Define
AZ(x, y) ≡

⋃
S∈S AS(x, y) ∪ A∗Z(x, y). For example, a path might be con-

sidered admissible if either (a) it remains entirely within the city limits of
Branson, Missouri, or (b) it is the shortest path as the crow flies.

18http://maps.google.com
19It is important to point out that for a general metric, the length of the minimal path

connecting x and y can be strictly greater than the metric-distance between x and y. It
is also possible that a state, while Euclidean compact, could nonetheless be non-compact
under some metric. This is a technical issue which we do not address here. Our general
definition does not preclude the set of admissible paths from being empty.

20While it would normally make sense for both AS(x, y) and A∗Z(x, y) to be defined with
respect to the same metric, this need not be the case, as A∗Z(x, y) may be defined in a
general way.
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2.0.5 Cores of prior districts

The set of admissible paths can be defined to privilege districts which sub-
stantially preserve prior districts. Let a prior districting plan D ⊂ KZ be
a set of districts such that

⋃
D∈D = Z and, for all D1, D2 ∈ D such that

D1 6= D2, interior (D1 ∩D2) = ∅. For each district D ∈ D, define PD(x, y) ≡
{g ∈ PZ(x, y) : g([0, 1]) ∈ D} as the set of paths contained entirely within the
district. Define AD(x, y) ≡ {g ∈ PD(x, y) : l (g) ≤ l (h) for all h ∈ PD(x, y)}
as the set of minimal paths between two points x, y ∈ D. As above, let
A∗Z(x, y) ⊂ PZ(x, y) be a set of admissible paths chosen by some method.
Define AZ(x, y) ≡

⋃
D∈DAD(x, y) ∪ A∗Z(x, y). Under this definition, a path

will be admissible if it was the shortest path between two people in the prior
district or if it is the shortest path between them.

2.1 The Measure

As in Chambers and Miller (2010), we suppose that there is a density function
f ∈ F representing a population distribution. For f ∈ F , let F be the
associated probability measure, so that F (K) ≡

∫
K
f(x)dx represents the

population of district K. A measure of compactness is a function sZ :
KZ × F → R+ which associates a unique number to every pair of a district
and population distribution.

We denote the set of paths connecting x and y and lying completely in
K as PZ(x, y;K). That is, PZ(x, y;K) = {g ∈ PZ(x, y) : g ([0, 1]) ⊂ K}.
Given an exogenous set of admissible paths AZ(x, y) for each x and y, the
compactness measure of K is now easy to define. Let AZ|K ≡ {(x, y) :
PZ(x, y;K)

⋂
AZ(x, y) 6= ∅}. That is, AZ|K is the set of pairs of points

for which some admissible path between them lies in the parcel K. Let the
indicator 1AZ|K : K×K → R be a function which returns a 1 if (x, y) ∈ AZ|K ,

and 0 otherwise.21 The generalized measure of compactness is given by:

sZ(K, f) ≡
∫
K

∫
K

1AZ|K (x, y)
f (x) f (y)

F (K)2
dy dx

The expression states that the measure of a district K is essentially the

21In the continuous case described, it is unnecessary to consider the case where x and y
are not distinct. In the discrete case, the indicator 1AZ|K must be defined so that it returns
a 1 if x = y.
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probability that for a randomly chosen pair,22 an admissible path between that
pair lies in the district.

3 Discussion

Measures based on minimal-distance paths (whether in terms of Euclidean
distance, road-based paths, time-travel paths, or some other metric) have two
features which we wish to note. First, these measures only consider paths
which are entirely contained within the boundaries of the state. Paths which
enter other states are irrelevant. Second, these measures penalize deviations
sharply. If, for some pair of points, no acceptable path is completely contained
within the district, the measures do not assess whether an acceptable path is
“mostly” within the district.

3.1 Out-of-state paths

An example which illustrates this first feature is provided in Figure 5.23 Figure
5(a) depicts a rectangular state that contains four equally-sized cities, two in
the west, and two in the east. Thick lines represent the boundaries of the
state; thin lines represent roads connecting the four cities. Perhaps because of
a geographic limitation, such as a tall mountain range, there is only one road
in the state which connects the cities in the north to the cities in the south.
This road is located near the center of the state. The cities in the west are
also connected by a relatively short road that passes through a neighboring
state; the cities in the east are connected by a similar road.

Two possible districting plans are depicted in Figures 5(b) and 5(c). In
Figure 5(b), the state is divided into northern and southern districts. Using
the road-based path measure, each district receives a perfect score. To see
why this is the case, note that, in both districts, the shortest road-based path
connecting the two cities is an east-west road that is entirely contained within
the district.

In Figure 5(c), the state is divided into western and eastern districts. Here
the eastern district receives a less-than-perfect score of 0.5. To see why this is
the case, consider a random pair of individuals living in the eastern district.

22Randomly chosen pair means independently drawn according to the probability measure
induced by f .

23We thank an anonymous referee for providing this example.
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(a) State with four equally-sized cities

(b) Road-Based Measure: ( 1 , 1 ) (c) Road-Based Measure: ( 1 , 0.5 )

Figure 5: Road-based paths

With probability one-half, they live in the same city, and consequently the
shortest road-based path connecting them will be in the district. However, it
is equally likely that they live in different cities, in which case the shortest
road-based path between them in the state enters the western district.

This example may be viewed as a criticism of road-based path measures.
Arguably, the districting plan depicted in Figure 5(c) is preferable, because the
eastern cities are relatively close, if one is willing to leave the state. However,
this argument ignores concerns other than road distance. For example, when
you leave the state, you need to drive past other people (or territory) to get
to your neighbors in a different part of the district. This imposes a “cost”
in terms of how neighborly you are with your fellow district members. While
it is possible to modify the model so that this cost need not be infinite, the
infinite cost is consistent with the legal requirement of “contiguity” found in
most states, which requires it to be possible for an individual to travel between
two points in a district without exiting the district.

Figure 6(a) depicts a state with eight equally-sized cities. Figures 6(b)
and 6(c) show two possible districting plans; the former consists of an inner
and an outer district while the latter consists of a northern and a southern
district. If there is no cost to traveling out of the state, then one might argue
that the districting plan depicted in Figure 6(b) is preferable because puts
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(a) State with eight equally-sized cities

(b) Districting Plan 1 (c) Districting Plan 2

Figure 6: A state with two districts.

the eastern cities in one district and the western cities in another. However,
the outer district is oddly-shaped because of the contiguity requirement. We
believe that the districting plan depicted in Figure 6(c) is more natural.

3.2 Penalizing deviations sharply.

The second feature of minimal-distance path-based measures is that they pe-
nalize deviations sharply. To understand what we mean, let 1AZ|K (x, y) be the
status of a pair of individuals. The measure considers only whether an admis-
sible path between two individuals is entirely contained within the district. It
does not give “partial credit” when a district “almost” contains an admissible
path. That status of a pair of individuals is either one or zero. One might
criticize the measure on the ground that it is not robust in the sense that a
small change in the district may lead to a path not being included. While it is
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possible to amend the measure so that it gives “partial credit” (see Chambers
and Miller, 2010), we believe that the stricter form of the measure we define
is preferable in that it is both simpler to understand and to calculate.

Furthermore, we argue that robustness should be understood with respect
to the entire measure, and not with respect to its’ components. In the simplest
case, when the population density function f is non-atomic, a small change in
the districting plan will only affect the status of a small proportion of pairs of
individuals. Consequently, a small change in the districting plan will only lead
to a small change in the measure of the districts. In practice, the population
is finite and discrete; however, because the number of people in each district is
large, and because relatively few people live at any single spot, a non-atomic
density function is a fairly good approximation.

4 Conclusion

We have introduced the first family of compactness measures that can incorpo-
rate a wide range of internal geographic features. The measures in this family
are the probability that a district contains an admissible path between a ran-
domly selected pair of people. We have shown how the measure can account
for roads, travel time, political boundaries, and prior districts. We have also
shown that family of measures contains the path-based measure of Chambers
and Miller (2010). This family of measures constitutes a systematic approach
for assessing compliance with these districting principles.

The family of measures proposed in this paper is large. Furthermore, the
construction of the measure allows us to combine sets of admissible paths;
for example, we may define a path as admissible if it is either (a) contained
within a city, or (b) contained within a prior district. Because we allow for
an arbitrary set of admissible paths, every possible districting plan can be
justified by some measure in this class. Consequently, it is important to be
discriminating in one’s choice of a measure. We envision two basic scenarios
when the measure may be used.

First, the measure may be written into a state constitution or statute as
a means to constrain the legislature’s choice of districting plans. Similarly,
the measure may be chosen by a state redistricting commission to distinguish
between competing plans. In this case, it is important that the set of admissible
paths be chosen in advance through a clear set of rules, and that these rules
not change with each new districting plan.
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Second, the measure may be used by a judge or a social scientist to evaluate
a districting plan approved by a particular state. In this case, the measure can
serve as a check. For example, if the legislature were to justify a districting
plan on the grounds that it preserved the cores of prior districts, the measure
could be used to examine the validity of the claim. It may be possible to show
that a district can not be justified by the goal of preserving the cores of prior
districts. However, the measure can be used only to rule out explanations,
and not to rule them in.
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