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Abstract

We introduce benchmarking, a method under which individuals are compared
according to benchmarks, or important accomplishments. We show that benchmark
rules are characterized by four axioms: transitivity, monotonicity, intersection dom-
inance, and union dominance.

Introduction

Employers making hiring decisions commonly follow a two-stage process. The pile of
candidates is first winnowed according to objective criteria. Difficult cases that remain
are then resolved by an executive decision. While the latter choice may be made on the
basis of gut feeling, the initial stage tends to follow a more formal process. This may
be because the objective criteria make it easier to delegate the winnowing decision to
administrative staff, or because an executive prefers to rely on more than mere instinct.
We describe a path that this formal process may take; we call it benchmarking.

A benchmark is an important accomplishment. It can be a doctoral degree in eco-
nomics, three years of work experience at the Securities and Exchange Commission, or
a clerkship on the Supreme Court. Benchmarking is the process of comparing candi-
dates according to benchmarks. A candidate is considered to be better than another
if the former’s résumé contains all of the latter’s benchmarks. A common benchmark
used in governmental hiring is the veterans’ preference, according to which a military
veteran is deemed superior to a non-veteran when they would otherwise be equivalent.
Benchmarking may not provide a complete ranking; Alice may be a veteran without work
experience, while Bob may be a non-veteran with work experience. But the benchmark
rule nonetheless provides valuable comparisons that can be used by decision makers.

Benchmarking is used in a variety of settings. Universities may use benchmarks in ad-
missions. Investment firms use benchmarks when deciding between projects. Consumers
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use benchmarks when buying computers. Governments frequently use benchmark rules in
assigning priorities in procurement contracts.1 Schools may be compared among among
benchmarks, such as the scores that their students have received in math, science, history,
and literature. While this practice is controversial, its’ study is important; large sums of
federal money are allocated to schools according to these metrics.2

Federal courts evaluating the decisions of administrative agencies often use benchmark
rules in determining whether to uphold the agency decision. For example, the Federal
Communications Commission was held to have acted unreasonably by awarding a televi-
sion station to a broadcaster who was weaker than another on all relevant criteria used
by the commission.3 Administrative agencies themselves may choose whether particular
criteria are important enough to qualify as benchmarks.4

Benchmark rules satisfy several nice properties. First, benchmarks enable us to order
the candidates. The order is not necessarily complete; it may be that Alice and Bob are
incomparable, but the order is transitive. If Alice is considered to be better than Chuck,
and Chuck is better than Diane, then Alice will be better than Diane.

Second, benchmark rules are monotonic. Suppose that Alice has achieved every ac-
complishment that Bob has, and then some. Alice must be considered to be at least as
good as Bob. But Bob may be her equal. What matters is not everything that Alice
has done, but only the benchmarks — the accomplishments deemed important for the
purposes of evaluation.

Third, benchmarks rules satisfy a property that we call intersection dominance. To
understand this property, consider a third applicant, Chuck, whose accomplishments are
exactly those common to both Alice and Bob. Suppose that, according to the rule, Alice is
at least as good as Bob. In this case, intersection dominance requires that Chuck must also
be at least as good as Bob. Why? Consider some accomplishment of Bob’s that Chuck
has not achieved. Alice must also not have achieved this accomplishment, yet it must
have been immaterial in comparing Alice and Bob. Otherwise, Alice would not have been
preferred to Bob. (Remember, we are not assuming completeness; Alice and Bob may be
incomparable.) In essence, intersection dominance requires that if that accomplishment
is irrelevant when comparing Bob with Alice, then that same accomplishment must also
be irrelevant when comparing Bob with Chuck. Consequently, Chuck is at least as good
as Bob. (Of course, if we add the monotonicity axiom, Bob will be at least as good as
Chuck, and thus the two will be equivalent.)

Fourth, benchmarks rules satisfy a property that we call union dominance. To under-
stand this property, consider a fourth applicant, Diane, who has achieved every accom-
plishment of Alice and every accomplishment of Bob, but not more. Suppose again that
Alice is considered by the rule to be at least as good as Bob. Then union dominance

1For the criteria used in determining eligibility for federal contracts, see 48 C.F.R. Chapter 1.
2In particular, the “adequate yearly progress” requirements of the No Child Left Behind act (see 20

U.S.C. 6311) can function like a benchmark rule under which schools are compared to themselves in
prior years. Over $14 billion was allocated for these grants in 2014.

3Central Florida Enterprises, Inc. v. Federal Communications Commission, 598 F.2d 37 (1979).
4For an example see Baltimore Gas & Electric Co. v. Natural Resources Defense Council, 462 U.S.

87 (1983), which upheld the decision of the Nuclear Regulatory Commission to ignore potential harm
from the accidental release of spent nuclear fuel from long term storage.
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requires the rule to consider Alice to be as good as Diane. The intuition is similar to
that underlying intersection dominance. Consider some accomplishment of Diane that
Alice has not achieved. Bob must have achieved it, yet it must have been immaterial in
making a decision between Alice and Bob. Otherwise, Alice would not have been pre-
ferred to Bob. Union dominance requires that if that accomplishment is irrelevant when
comparing Alice with Bob, then it must also be irrelevant when comparing Alice with
Diane. Consequently, Alice is at least as good as Diane. (Again, the monotonicity axiom
would imply that Diane is at least as good as Alice, so the two would be equivalent.)

Every benchmark rule satisfies transitivity, monotonicity, intersection dominance, and
union dominance. But furthermore, the converse is true. Our main result is that a binary
relation is a benchmark rule if and only if it satisfies these four axioms.

Benchmarking may be used when comparing scholars by their citation profiles, as in
Chambers and Miller (2014b). Here, an accomplishment is a pair of two numbers (x, y)
where the individual has x publications with at least y citations each. The step-based
indices characterized by Chambers and Miller (2014b) are all benchmark rules, but the
reverse is not true. For example, the h-index (Hirsch, 2005) and the i-10 index are two
popular measures of scholarly accomplishment; each is a step-based index. However,
many believe that multiple such indices should be used in practice. A method of com-
parison that determines Alice to be better than Bob if she is better according to both
measures would not be a step-based index, but would be a benchmark rule. Benchmark
rules are more versatile in that they can be applied to a wider array of problems than
can be the step-based indices.

The relationship between the step-based indices and the benchmark rules is not a co-
incidence, but can be seen in the axioms as well. The intersection and union dominance
axioms are weaker forms of the lattice-theoretic notions of meet and join homomorphisms
used in Chambers and Miller (2014b). These properties were first studied in economics
by Kreps (1979) and have since been studied in a wide variety of settings. For exam-
ple, Hougaard and Keiding (1998), Christensen et al. (1999), and Chambers and Miller
(2014a,b) study these axioms in the context of measurement, while Miller (2008), Cham-
bers and Miller (2014a), Dimitrov et al. (2012), Leclerc (2011), and Leclerc and Monjardet
(2013) study them in the context of aggregation.

Our work is also related to previous literature on incomplete preferences. It is a
relatively easy corollary of our main result (proof available upon request) that � satisfies
our axioms if and only if there is a family R of complete relations satisfying our axioms
such that for all x, y, x � y if and only if for all �∗∈ R, x �∗ y. Results of this type
were pioneered by Dubra et al. (2004) for the expected-utility case. Other such results
include Duggan (1999), for the case of general binary relations, Donaldson and Weymark
(1998), Dushnik and Miller (1941), and Szpilrajn (1930).5

5See also the work of Ok (2002) on incomplete preferences in economic environments, and a choice
theoretic foundation for incomplete preferences (Eliaz and Ok, 2006).
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The Model

Let A be a set of accomplishments, and let ≤ be a partial order on A.6 A subset B ⊆ A
is comprehensive if for all b ∈ B and a ∈ A, a ≤ b implies that a ∈ B. Let X be the set
of all finite comprehensive subsets of A. The set X forms a lattice when ordered by set
inclusion. A benchmarking rule is a binary relation � on X for which there exists a
set of benchmarks B ⊆ A such that, for all x, y ∈ X, x � y if and only if B ∩ x ⊇ B ∩ y.

For a binary relation � on X, we define the following properties:

Transitivity: For all x, y, z ∈ X, if x � y and y � z, then x � z.

Monotonicity: For all x, y ∈ X, if x ⊇ y, then x � y.

Intersection dominance: for all x, y ∈ X, if x � y, then (x ∩ y) � y.

Union dominance: For all x, y ∈ X, if x � y, then x � (x ∪ y).

The interpretation of these axioms is described in the introduction. We use these
axioms to prove our main result.

Theorem 1. A binary relation � on X satisfies transitivity, monotonicity, intersection
dominance, and union dominance if and only if it is a benchmarking rule.

The proof is given the appendix.

Examples

We provide three examples of sets that can be compared according to benchmark rules.
These sets vary according to the specification of A and ≤, and of course, to the interpre-
tation given to them.

Ranking Scholars

Academic institutions often use influence measures to compare scholars in terms of ci-
tations to their scientific publications. Popular influence measures include the h-index
(Hirsch, 2005), the largest number h such that the scholar has at least h publications
with at least h citations each, the i10-index, the number of publications with at least
ten citations each, and the citation count, the combined number of citations to all of the
author’s publications.7 Chambers and Miller (2014b) study a model of influence measures
and characterize the family of step-based indices.

Influence measures can be studied in our framework. Let A ≡ N × Z+, the set of
pairs of integers (m,n) where m is positive and n is non-negative, and let ≤ be the
natural order, where (m,n) ≤ (m′, n′) if and only if m ≤ m′ and n ≤ n′. The set X
of all finite comprehensive subsets of A is equivalent to the set of scholars. Benchmark

6A partial order is a binary relation which is reflexive, transitive, and antisymmetric.
7These particular measures are widely used, in part, due to their inclusion in the internet service

“Google Scholar Profiles”, available at http://scholar.google.com/.
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rules are related to the step-based indices characterized in that paper: a relation � is a
benchmark rule if and only if there is a collection {�i} of step-based indices for which
x � y if and only if x �i y for all i. A benchmark rule is complete if and only if it can
be represented by a single step-based index.

For example, the h-index and the i6-index (the number of publications with at least
six citations each) are step-based indices and benchmark rules. The benchmarks for these
rules are depicted in Figures 1(a) and 1(b) respectively. One can see that, according to the
h-index, scholars B and C are equivalent and that each dominates scholar A. According
to the i6-index, on the other hand, scholar C dominates scholar A, and each of them
dominates scholar B. From these two indices we can construct a composite benchmark
rule, under which a scholar is at least as good as another if the former scholar is at least
as good according to both the h-index and the i6-index. This is shown in Figure 1(c).
Under this composite rule, scholars A and B are incomparable, but both are dominated
by scholar C. In the context of ranking scholars, every collection of step-based indices can
generate a benchmark rule in this manner, and every benchmark rule can be generated
by some collection of step-based indices.
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5 10

(a) h-index
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5 10

(b) i6-index
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10

5 10

(c) the composite rule

scholar a scholar b scholar c

Figure 1: Ranking Scholars.

Evaluating Schools

Under the No Child Left Behind act, schools are compared on the basis of their perfor-
mance on a set of exams. Let E be a set of exams, and define A ≡ E × N, where an
element (e, n) corresponds to a score of n on exam e. Define ≤ so that (e, n) ≤ (e′, n′)
if and only if e = e′ and n ≤ n′. A school is a finite comprehensive subset of A; that
is, it consists of the schools’ score on each exam, and all lesser scores. For example, if a
school has received a scores of 2, 0, and 3 on exams e1, e2, and e3, respectively, then the
school is represented by the set {(e1, 1), (e1, 2), (e3, 1), (e3, 2), (e3, 3)}. Note that in this
example, the score of 2 on exam e3 is imputed to the school because it received a higher
score of 3.
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Alternatively, we can represent each school as a vector in s ∈ ZE
+, where the se is

the score on exam e. A benchmark is a score on a particular test; this is equivalent to
a vector with exactly one non-zero element. For example, the vector (0, 4, 0) denotes
the benchmark of having achieved a score of 4 on the 2nd exam. A school s achieves
benchmark b if be ≤ se for all e ∈ E. There is a bijection from the set X of all finite
comprehensive subsets of A to the set of vectors ZE

+. To see this, let x ∈ X. Then there
is a vector sx ∈ ZE

+, where sxe = max{0, n : (e, n) ∈ x}. Conversely, if we begin with
s ∈ ZE

+, we can define the set xs ≡ {(e, n) : n ≤ se}.
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(a) Benchmark Representation
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(b) Vector Representation

Figure 2: Ranking Schools.

Figure 2 depicts both representations of schools. In the benchmark representation
(Figure 2(a)), each exam is represented by a separate vertical line containing the possible
scores on that exam. A school takes the form of a finite comprehensive subset, which
implies that the school can be represented by its’ upper boundary. In the example,
the school has achieved scores of 4, 3, and 5 on the respective exams. In the vector
representation (Figure 2(b)), on the other hand, the same school is depicted by the
vector (4, 3, 5). In both representations, benchmarks are represented by black dots on
the axes. One can see that the highest benchmarks this school has achieved are scores of
three on the first exam, two on the second, and five on the third.

Of course, this representation of schools can be applied to any case in which al-
ternatives are compared among multiple dimensions. Academics, for example, may be
compared according to their accomplishments in different areas, such as the numbers of
papers published, citations received, seminars given, and conferences attended. In this
framework, the citation count can satisfy the axioms, although it would not satisfy the
axioms in the case of ranking scholars, above. The dimensions may also represent criteria
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used in multicriterial decision-making.8

Unordered Accomplishments

We can also compare all finite subsets of any set A, regardless of comprehensiveness. To
do this, we define ≤ such that no two distinct elements are comparable (i.e., so that
a ≤ b implies that a = b). A set of benchmarks is pictured in Figure 3. Here, scholars A
and B are incomparable, because each contains benchmarks not contained by the other.
Similarly, scholars A and C are also not comparable. However, one can see that scholar
B dominates scholar C.

scholar a scholar b scholar c

Figure 3: Unordered Accomplishments.

Conclusion

We have described a method of comparison that we term “benchmarking.” Benchmark
rules are characterized by four axioms, transitivity, monotonicity, intersection dominance,
and union dominance.

Benchmark rules are not necessarily complete, and can be used in cases where com-
pleteness is considered undesirable or is otherwise not required. One can see that a
benchmark rule will satisfy completeness if and only if the benchmarks are totally or-
dered. In the case of ranking scholars, this implies that they must form a step-based
index. In the case of evaluating schools, it implies that only a single test will matter. In
the unordered case, it implies that there can be only one benchmark.

In some cases it may seem as if, in practice, the benchmark rule is simply a comparison
according to set-inclusion. This does not necessarily mean that all potential accomplish-
ments are benchmarks. Alternatively, it may be that only benchmarks are included on
résumés. This would be expected if the rule were to be known with certainty.

8See Spitzer (1979) and Katz (2011) for applications of multicriterial decision-making in law.
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In other cases, however, résumés often include accomplishments that are not bench-
marks. One might ask why this would occur. As we noted, this might come across as a
result of uncertainty about the rule. However, there are other possibilities. One is that
the applicant finds it efficient to use the same résumé for multiple employers, or in mul-
tiple markets, where different rules may be applied. Alternatively, as we explained in the
introduction, the benchmark rule might be used only as a first step in sorting applicants;
the otherwise extraneous information might still be relevant when making an executive
decision.

Appendix

The proof of Theorem 1 makes use of the concept of an interior operator,9 a function
i : X → X for which the following three properties are satisfied:

Contractivity: for all x ∈ X, i(x) ⊆ x.

Monotonicity: for all x, y ∈ X, x ⊆ y implies i(x) ⊆ i(y).

Idempotence: for all x ∈ X, i(i(x)) = i(x).

Proof of Theorem 1. If: Let � be a benchmarking rule and with benchmarks B. The
transitivity of � follows from the transitivity of ⊇. To see this, let x � y and y � z. It
follows that B ∩x ⊇ B ∩ y and B ∩ y ⊇ B ∩ z. Hence B ∩x ⊇ B ∩ z and therefore x � z.
To see that � is monotonic, note that x ⊇ y implies that B ∩ x ⊇ B ∩ y and therefore
that x � y. Lastly, let x � y. Then B ∩ x ⊇ B ∩ y. Intersection dominance follows from
the fact that B ∩ (x ∩ y) = (B ∩ x) ∩ (B ∩ y) = B ∩ y and therefore x ∩ y � y. Union
dominance follows from the fact that B ∩ x = (B ∩ x)∪ (B ∩ y) = B ∩ (x∪ y) and hence
x � x ∪ y.

Only if: Let � satisfy the four axioms transitivity, monotonicity, intersection domi-
nance, and union dominance. Define, for every x ∈ X, the function

i(x) ≡
⋂
{z ⊆ x : z � x}.

Notice that because |{z ∈ X : z ⊆ x}| < +∞ for all x, it follows that 0 < |{z ⊆ x : z �
x}| < +∞, so i(x) ∈ X. Observe also that i(x) =

⋂
{z : z � x}, since for every z such

that z � x, we know that x∩ z � x (by intersection dominance) and that x∩ z ⊆ x. We
claim that i(·) is an interior operator satisfying, for all x, y ∈ X, (1) x � y if and only if
i(x) ⊇ i(y) and (2) i(x) ∪ i(y) = i(x ∪ y).

First, the fact that x ∈ {z : z � x} implies that i(x) =
⋂
{z : z � x} ⊆ x, so i(·) is

contractive. Next, we claim that x ∼ i(x). To see this, by contractivity and monotonicity

9An interior operator is a dual concept to that of a closure operator (Ward, 1942). These objects are
intimately connected with the theory of Galois connections and residuated mappings; see, e.g. Blyth and
Janowitz (1972). Galois connections have recently found economic application in Nöldeke and Samuelson
(2015).
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of � we know that x � i(x). Furthermore, by intersection dominance, z � x implies
x ∩ z � x, and thus by finite induction it follows that i(x) =

⋂
{z ⊆ x : z � x} � x.

We prove that x � y if only if i(x) ⊇ i(y). First, let x � y. It follows that {z : z �
y} ⊇ {z : z � x} and therefore that i(x) ⊇ i(y). To show the converse, let i(x) ⊇ i(y).
By monotonicity of � it follows that x ∼ i(x) � i(y) ∼ y, and thus by transitivity, x � y.

To see that i(·) satisfies monotonicity, let x ⊇ y. By monotonicity of � it follows that
x � y, and therefore that i(x) ⊇ i(y). To see that i(·) satisfies idempotence, note that
because x ∼ i(x) it follows that the sets {z : z � z} and {z : z � i(x)} coincide.

Finally, let x, y ∈ X. Recall that x ∼ i(x) and y ∼ i(y). By transitivity and
monotonicity of �, we know that i(x)∪ i(y) � x and i(x)∪ i(y) � y. By union dominance
and monotonicity of �, y ∪ i(x)∪ i(y) � i(x)∪ i(y). By transitivity and monotonicity of
�, we know that x � y ∪ i(x) ∪ i(y), thus by union dominance and monotonicity of �,
x ∪ y ∪ i(x) ∪ i(y) � y ∪ i(x) ∪ i(y). By transitivity, x ∪ y ∪ i(x) ∪ i(y) � i(x) ∪ i(y). By
contractivity, x∪ y∪ i(x)∪ i(y) = x∪ y, hence x∪ y � i(x)∪ i(y). Using the fact that for
arbitrary a, i(a) =

⋂
{z : z � a}, it follows that i(x∪y) ⊆ i(x)∪i(y). Lastly i(x) ⊆ i(x∪y)

and i(y) ⊆ i(x∪y) (from the monotonicity of c), and thus i(x)∪i(y) ⊆ i(x∪y). Therefore
i(x) ∪ i(y) = i(x ∪ y).

For a subset C ⊆ A, we define K(C) as its comprehensive hull ; the smallest compre-
hensive set containing C. To simplify notation, for an element a ∈ A, we write K(a) in
place of K({a}).

Define B ≡ {a ∈ A : K(a) = i(K(a))}. We claim that i(x) = K(B ∩ x). To see this,
let a ∈ K(B ∩ x). It follows that there exists b ∈ B ∩ x for which a ≤ b. Because b ∈ x
it follows that K(b) ⊆ x, and by monotonicity of i(·), i(K(b)) ⊆ i(x). Because b ∈ B
it follows that K(b) = i(K(b)) and therefore b ∈ i(x). Because i(x) is comprehensive
and a ≤ b it follows that a ∈ i(x). Conversely, let a ∈ i(x). Let b ∈ i(x) such that
a ≤ b and b on in the comprehensive frontier of i(x), so that i(x) \ {b} ∈ X. Then
i(x) = K(b) ∪ K(i(x) \ {b}). By idempotence and the join homomorphism property,
i(x) = i(i(x)) = i(K(b))∪ i(i(x) \ {b}). Because b ∈ i(x) and b 6∈ i(x) \ {b} it follows that
b ∈ i(K(b)) and hence K(b) ⊆ i(K(b)). By contractivity it follows that K(b) = i(K(b))
and hence b ∈ B. Because b ∈ i(x) it follows from contractivity that b ∈ x and therefore
that b ∈ B ∩ x. Because a ≤ b it follows that a ∈ K(B ∩ x) and hence i(x) = K(B ∩ x).

It follows then that x � y if and only if K(B∩x) ⊇ K(B∩ y). It remains to be shown
that K(B ∩ x) ⊇ K(B ∩ y) if and only if B ∩ x ⊇ B ∩ y. One direction (if) is trivial. To
see the converse, let K(B ∩ x) ⊇ K(B ∩ y) and let a ∈ B ∩ y. Then a ∈ K(B ∩ x) and
thus there exists b ∈ B ∩x such that a ≤ b. By construction a ∈ B, and b ∈ x, and a ≤ b
implies that a ∈ x and hence a ∈ B ∩ x.

Independence of the Axioms: We describe four rules: each satisfies three axioms
while violating the fourth.

Transitivity: Let �1,�2,�3 be benchmark rules such that there exist x, y, z ∈ X such
that {i : x �i y} = {1, 2}, {i : y �i z} = {2, 3}, and {i : x �i z} = {2}. Let � be the rule
where x � y iff |{i : x �i y}| ≥ 2. To see that this rule is monotonic, let x ⊇ y. Because
the benchmark rules are monotone, it follows that x �i y for all i and thus x � y. To
see that the rule is intersection dominant, let x � y. It follows that |{i : x �i y}| ≥ 2.
Because the benchmark rules are intersection dominant, x �i y implies that x ∩ y �i y.
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Therefore |{i : x ∩ y �i y}| ≥ 2 implies that x ∩ y � y. To see that the rule is union
dominant, let x � y. It follows that |{i : x �i y}| ≥ 2. Because the benchmark rules
are union dominant, x �i y implies that x �i x ∪ y. Therefore |{i : x �i x ∪ y}| ≥ 2
implies that x � x∪ y. To see that the rule violates transitivity, let x, y, z ∈ X such that
{i : x �i y} = {1, 2}, {i : y �i z} = {2, 3}, and {i : x �i z} = {2}. Then x � y and
y � z but not x � z.

Monotonicity: Let � be the rule where x � y if and only if x = y. Transitivity of
� follows from transitivity of =. To show that � is intersection dominant, let x � y.
Because s = y it follows that x ∩ y = y, hence x ∩ y � y. To show that � is union
dominant, let x � y. Because x = y it follows that x ∪ y = x, hence x � x ∪ y. To show
that � is not monotone, let x ( y. Then y 6� x, a violation of monotonicity.

Intersection Dominance: Let B ≡ {{1}, {1, 3}, A}, and let� be the rule where x � y if
and only if {b ∈ B : x ⊆ b} ⊆ {b ∈ B : y ⊆ b}. To show that� is transitive, let x, y, z ∈ X
such that x � y � z. Then {b ∈ B : x ⊆ b} ⊆ {b ∈ B : y ⊆ b} ⊆ {b ∈ B : z ⊆ b},
and consequently x � z. To see that � is monotonic, let x ⊇ y, and note that for all
b ∈ B, x ⊆ b implies that y ⊆ b. This implies that {b ∈ B : x ⊆ b} ⊆ {b ∈ B : y ⊆ b}
and therefore x � y. To show that � is union dominant, let x, y ∈ X such that x � y.
This implies that {b ∈ B : x ⊆ b} ⊆ {b ∈ B : y ⊆ b}. For all b ∈ B, x ∪ y ⊆ b if
and only if x ⊆ b and y ⊆ b, hence {b ∈ B : x ⊆ b} ⊆ {b ∈ B : x ∪ y ⊆ b}. Thus,
x � x ∪ y. To show that � fails intersection dominance, note that {1, 2} � {1, 3},
because {b ∈ B : {1, 2} ⊆ b} = {A} ⊆ {A, {1, 3}} = {b ∈ B : {1, 3} ⊆ b}. However,
{b ∈ B : {1, 2} ∩ {1, 3} ⊆ b} = B 6⊆ {A, {1, 3}} = {b ∈ B : {1, 3} ⊆ b} and therefore
{1, 2} ∩ {1, 3} 6� {1, 3}.

Union Dominance: Let B ≡ {{1}, {1, 2}, {1, 2, 3}}, and let � be the associated bench-
mark rule. To show that � is transitive, let x, y, z ∈ X such that x � y � z. Then
{b ∈ B : b ⊆ x} ⊇ {b ∈ B : b ⊆ y} ⊇ {b ∈ B : b ⊆ z}, and consequently x � z.
To see that � is monotonic, let x ⊇ y, and note that for all b ∈ B, b ⊆ y implies
that b ⊆ x. This implies that {b ∈ B : b ⊆ x} ⊇ {b ∈ B : b ⊆ y} and therefore
x � y. To show that � is intersection dominant, let x, y ∈ X such that x � y. This
implies that {b ∈ B : b ⊆ x} ⊇ {b ∈ B : b ⊆ y}. For all b ∈ B, b ⊆ x ∩ y if
and only if b ⊆ x and b ⊆ y, hence {b ∈ B : b ⊆ x ∩ y} ⊆ {b ∈ B : x ∪ b ⊆ y}.
Thus, x ∩ y � y. To show that � fails union dominance, note that {1, 2} � {2, 3},
because {b ∈ B : b ⊆ {1, 2}} = {{1}, {1, 2}} ⊇ ∅ = {b ∈ B : b ⊆ {2, 3}}. However,
{b ∈ B : b ⊆ {1, 2}} = {{1}, {1, 2}} 6⊇ B = {b ∈ B : b ⊆ {1, 2} ∪ {2, 3}} and therefore
{1, 2} 6� {1, 2} ∪ {2, 3}.
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