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Abstract

Two symmetric players bargain over an infinite stream of pies. There is one

exogenously given pie in every period, whose size is stochastic, and the pies

are iid. Play can be in a tabula rasa mode or dispute mode. When it is in

the former, Nature selects a proposer and a responder with equal probabilities,

and a proposal is made by the proposer regarding the division of the present

pie. If there is agreement then it is implemented and play moves on to the next

period, where it is again in tabula rasa. If there is rejection then dispute starts,

which means that the players start to bargain over the disputed pie according

to Rubinstein’s (1982) protocol. As long as the disputed pie is Rubinstein-

bargained over, all the new pies that arrive are not available for consumption

(they disappear right after they materialize). Once a dispute settles, the game

shifts back to tabula rasa. I characterize the game’s unique stationary subgame

perfect equilibrium.
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1 Introduction

Bargaining often takes place repeatedly, among the same players. Examples abound:

firms and labor unions bargain periodically over wages, working conditions, health

benefits, and more; firms bargain from time to time on how to cooperate, or collude;

government officials bargain repeatedly over matters of policy, political influence, and

so on.

In this paper I study a stylized model which is designed to focus on two aspects of

repeated non-cooperative bargaining. First, the issues over which the players bargain

arrive sequentially and stochastically. Second, resolution of earlier issues is necessary

for reaping the benefits of future bargains. That is, as long as the bargaining problem

of period t has not been solved, the players are not available to bargain over the

surplus that materializes at period t + 1. Furthermore, I make the assumption that

if the problem of period t has not been solved by the beginning of period t+ 1, then

the surplus of period t + 1 disappears. Namely, bargaining opportunities have to be

exploited as soon as they become available, otherwise they are lost. To illustrate

the idea, think of two partners in a firm who need to decide whether to enter a

certain market, in which operation is profitable only if one is a monopolist. If the

partners can’t decide fast, because there are some unsettled issues over which they

are negotiating, some other competitor will fill in the vacuum, and the opportunity

of profit-generation will be lost.

In the model, two players bargain repeatedly over divisions of pies. The pies

are exogenous, and one pie “arrives” in the beginning of every period; the pies are

stochastic and iid. A proposer and responder are selected by Nature, with equal

probabilities, as long as no disagreements (i.e., rejections of offers) have occurred.1

Once an offer is rejected, the game enters a “dispute phase” where the players bargain

a la Rubinstein (1982) over the disputed pie. During the Rubinstein bargaining over

1This symmetric probabilistic method for selecting a proposer in bargaining games has first been

studied by Binmore (1987).
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this pie, all the new pies that arrive cannot be utilized, and they disappear instantly.

Once an agreement over a disputed pie is reached, play reverts back to the original

phase, in which Nature randomly selects a proposer and a responder in the beginning

of every period.

The game has a unique stationary subgame perfect equilibrium. In equilibrium,

there is agreement in every period (i.e., disputes never occur). Moreover, there is a

cutoff such that if the pie size is below it, then the proposer demands (and obtains)

the entire pie. When the pie size is above the cutoff it is split non-trivially between the

players according to some formula. The reason for the “dictatorial demands of small

pies” is that the responder does not find rejection of such dictatorial offers worthwhile,

because by rejecting a proposal he triggers the risk of losing a large social surplus in

the following round.

Bargaining games with a stochastic pie-size have been studied in the literature

(see, e.g., Merlo and Wilson 1995), but no previous paper has combined—to the best

of my knowledge—stochastic pies and a repeated-bargaining setting. One feature of

my model that does have a counterpart (though a somewhat remote counterpart) in

other works is that disagreement in period t affects the set of feasible utility-pairs of

period t + 1. For instance, Fershtman and Seidmann (1993) studied an alternating

offers game (over the division of a single pie) under the behavioral assumption that

once a player rejects a share x of the pie, he commits to refusing to anything less

than x in all future periods. The intertemporal links in my model are very different.

Finally, my model can be viewed as complementary to the bargaining and markets

literature, which considers models with a stochastic population of bargainers, but

deterministic social surplus (see the book by Osborne and Rubinstein 1990; see in

particular chapter 6 and the references therein).

The rest of the paper is organized as follows. Section 2 describes the model

formally. The equilibrium is derived and discussed in Section 3. Section 4 concludes.
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2 Model

Time is discrete and runs as t = 1, 2, · · · . Two players bargain over an infinite stream

of pies, one in every period. In each period t a pie of size mt materializes, where mt

is a random draw from the distribution F over [0,M ].2 Pies of different periods are

independent of one another. Let me ≡
∫M
0
tdF (t).

In any given period play can be in one of two phases: tabula rasa (TR) or dispute

(D). In the first period, t = 1, the game starts at TR. In the beginning of each

period t in which the game is at TR, Nature selects, randomly, a proposer and a

responder. Each player has probability 1
2

to be assigned to either role. Once the roles

are assigned, that period’s pie, mt, materializes. The proposer offers a split of the

pie: he asks for himself a share s and offers the remaining mt − s to the responder,

where s ∈ [0,mt]. If the responder accepts then this division of mt is implemented,

and the game moves to period t+1, where it is again at TR and the above interaction

repeats. If, on the other hand, the responder rejects the offered split, then the game

moves to period t+ 1, but it now starts in phase D. Now, the player who rejected the

proposed division makes a counter offer. The pie of period t + 1, mt+1, disappears.

That is, disagreement in period t entails a one-period delay and a loss of the next

period’s social surplus. The players bargain over the disputed pie, mt, according to

Rubinstein’s (1982) alternating-offers protocol: every rejection entails a one-period

delay and a change of roles between the proposer and the responder. As long as this

Rubinstein-bargaining over the disputed pie takes place, all the new pies that arrive

disappear instantly. If there is perpetual disagreement over the disputed pie then

the game ends with its outcome being a concatenation of the history that preceded

bargaining over the disputed pie, and the perpetual disagreement that came after the

disputed pie arrived. If there is agreement after τ rounds of Rubinstein-bargaining,

then the agreed-upon split of mt is implemented in period t + τ , and play moves to

period t+ τ + 1, where it starts at phase TR.

2Abusing notation a little, I use mt to denote both the pie of period t as well as its size.
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To make the above description formal, and in order to define strategies, I now

define histories. The following notation will be useful. Given a number m > 0, let

D(m) be the set of all possible divisions of m between the players, namely D(m) ≡

{x ∈ R2
+ : x1 + x2 = m}. The initial history is h0 = ∅. A history of length t ≥ 1

is defined given a sequence of realizations of pie sizes, mt = (m1, · · · ,mt). The set

of those histories is denoted H(mt). An element ht ∈ H(mt) takes the form ht =

(h1t , · · · , htt), where for each k ∈ {1, · · · , t} the component hkt = (hkt (1), hkt (2), hkt (3))

belongs to the product set D(zk)×{1, 2}× {Accept, Reject}, where the definition of

{zk}tk=1 is given by 1-3, and where condition ? is satisfied:

1. z1 = m1,

2. For all k < t: hkt (3) = Accept⇒ zk+1 = mk+1, and

3. For all k < t: hkt (3) = Reject⇒ zk+1 = zk.

Condition ?: for all k < t, if hkt (3) = Reject then hk+1
t (2) = 3− hkt (2).

A history ht records for each period up to t what was the pie to bargain over in this

period and what was the offered split (namely, hkt (1)), who was the proposer (namely,

hkt (2)), and what was the responder’s response (namely, hkt (3)). The set of all histories

of length t is Ht ≡ ∪mt∈[0,M ]tH(mt). The set of all histories is H ≡ ∪tHt.

A strategy for player i is a pair of functions, σi = (di, ri). Given a period t + 1

(t ≥ 0) and a history that leads to it, ht, the demand function di specifies an offer as

a function of the history and of the current pie, di(ht,mt+1) ∈ [0, zt+1]. The response

function ri prescribes an accept/reject decision for any offer the opponent may make,

as a function of the history and the offer made. A player uses the di component of his

strategy whenever he is called to be the proposer, and uses the ri component when

he is called to be the responder.

Given a history ht and a player i, let πi(ht) = (πi1(ht), · · · , πit(ht)) be the sequence

of pie slices that i obtains along this history. These slices are defined in the obvious
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way.

For all k ∈ {1, · · · , t}:

• [hkt (2) = i]&[hkt (3) = Accept]⇒ πik(ht) = hkt (1)i.
3

• [hkt (2) 6= i]&[hkt (3) = Accept]⇒ πik(ht) = hkt (1)3−i.

• [hkt (3) = Reject]⇒ πik(ht) = 0.

A strategy-pair σ = (σ1, σ2) induces a probability distribution on H. Given the

history ht and its continuation ht+τ , the probability of arriving ht+τ given ht and

given that σ is played is denoted by Prσ(ht+τ |ht). The set of continuation histories

of ht is denoted by C(ht). Player i’s expected utility from continuation play given ht

and σ is:

Ui(σ|ht) =
∑

ht+τ∈C(ht)

Prσ(ht+τ |ht)δτπit+τ (ht+τ ),

where δ ∈ (0, 1) is a discount factor.

The strategy-pair σ is a subgame perfect equilibrium (equilibrium, for short) if σ1

maximizes U1((., σ
2)|ht) for all ht, and the analogous requirement holds for player 2.

An equilibrium σ is stationary if for each player i the strategy σi is independent of

histories. That is, each player utilizes the same demand and response functions, no

matter what is the history that prevailed before he was called to make his move. In

what follows, I consider only stationary equilibria. I use x(.) to denote player 1’s

demand function in such an equilibrium, and use y(.) to denote player 2’s demand

function. Note that in a stationary equilibrium a player’s expected utility is the same,

no matter the history after which it is calculated. Denote i’s expected utility by Vi.

This number is called i’s equilibrium value (value, for short).

Denote the above game by G.

3hk
t (1)i is the i-th coordinate of hk

t (1).
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3 The result

Theorem 1. The game G has a unique stationary equilibrium. The equilibrium

demand function, which is common to both players, is given by:

d∗(m) =

m if m ≤ me

2
,

m+δm
e

2

1+δ
otherwise.

Every offer is accepted immediately on the path. In general (i.e., on and off the path),

when the pie size is m the offer m − x is accepted if and only if m − x + δ me

2(1−δ) ≥

δd∗(m) + δ2 me

2(1−δ) .

Theorem 1 will be proved by several lemmas. In their proofs, Pi is a shorthand for

“player i.”

Lemma 1. In a stationary equilibrium every offer is accepted immediately.

Proof. Consider, wlog, period t, in which P1 is the proposer and the pie size is m. Let

(x,m−x) be the proposal. Assume by contradiction that this offer is rejected by P2.

There are two possibilities: either P2’s counter offer is accepted in the next round,

or it is rejected. The latter cannot happen in a stationary equilibrium, because it

leads with certainty to t + 2, in which P1 is the proposer and the pie size is m. By

stationarity, there is rejection in all future periods, which is impossible in a stationary

equilibrium. Therefore P2’s counter-offer, say (m − y, y), is accepted at t + 1. But

then P1 has a profitable deviation at t: to offer (m− y, y), which would be accepted

because of subgame perfection.

Lemma 2. In a stationary equilibrium, whenever the responder is offered a strictly

positive share of the pie, he is indifferent between accepting and rejecting it.

Proof. By Lemma 1 the responder accepts the offer, hence he weakly prefers accep-

tance to rejection. Had this preference been strict, the proposer could have ε-increased

his demand, and for a sufficiently small ε > 0 the responder would still agree.
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Lemma 3. In a stationary equilibrium, the players’ values are equal; namely, V1 = V2.

Proof. Consider a stationary equilibrium, and assume by contradiction, wlog, that

V2 < V1. Since, by Lemma 1, there is acceptance in every round, and since each

player has a 50% chance of becoming the proposer whenever a new pie arrives (and

the game is at TR), it follows that there is a pie size m > 0 given which P2 is

more generous than P1. That is, y(m) < x(m). In particular, y(m) < m, so P2

offers a strictly positive share to P1. Hence, by Lemma 2, P1 is indifferent between

acceptance and rejection:

m− y(m) + δV1 = δx(m) + δ2V1.

Also, due to immediate acceptance, P2 weakly prefers acceptance of P1’s offer to

rejection of this offer:

m− x(m) + δV2 ≥ δy(m) + δ2V2.

Thus, we obtain:

y(m) + δx(m) = m+ δ(1− δ)V1 > m+ δ(1− δ)V2 ≥ δy(m) + x(m),

implying that y(m) > x(m)—a contradiction.

I therefore denote the value of a stationary equilibrium by V .

Lemma 4. Consider a stationary equilibrium whose value is V . If the pie size m

satisfies m ≤ (1 − δ)V then the proposer demands (and obtains) the entire pie. If

m > (1 − δ)V , then the proposer proposes a strictly positive share of the pie to the

responder.

Proof. Wlog, consider period t and suppose that P1 is the proposer. Consider first

the case m ≤ (1 − δ)V . Assume by contradiction that P1 demands in equilibrium
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x < m. By Lemma 1, this offer is accepted by P2. Consider the deviation where

instead of demanding for himself x, P1 demands the entire pie. P2 must reject, else

the demand x is inconsistent with equilibrium. Now, there are two possibilities:

(1) There is agreement in t+1 regarding P2’s counter offer. Note that the maximal

period-(t + 1) payoff that P2 can obtain is m. Therefore, his rejection in t implies

that δm+ δ2V > δV , or m > (1− δ)V , which is impossible.

(2) There is disagreement in t + 1. Then play moves to t + 2 in which, again,

P1 needs to propose a division of m. By the stationarity of the equilibrium he

offers (x,m − x), which is accepted. Therefore, the rejection of P2 at t implies

δ2(m− x) + δ3V > δV , or δ(m− x) + δ2V > V . Therefore δm > (1− δ2)V , and since

m ≤ (1− δ)V we obtain δ(1− δ)V > (1− δ2)V , or δ > 1 + δ.

Consider now m > (1−δ)V . Assume by contradiction that P1 demands the entire

pie. By Lemma 1, P2 agrees to this demand in equilibrium. Consider the subgame

that is played given the rejection of P1’s offer; namely, the subgame that starts at

t + 1 in which P2 proposes a division of m. P1 would accept any x that satisfies

x + δV ≥ δm + δ2V (the RHS is his payoff in case he rejects P2’s offer, due to the

equilibrium’s stationarity). In particular, he would agree to x = δm−δ(1−δ)V (note

that the RHS is positive per the assumption on m). I argue that the above deviation

of P2 is profitable; namely, that

δ{m− [δm− δ(1− δ)V ] + δV } > δV.

The above simplifies to m > (1− δ)V , which holds by assumption.

Lemma 5. Consider a stationary equilibrium whose value is V . If m > (1 − δ)V

then the proposer’s demand is independent of the proposer’s identity.

Proof. Assume by contradiction that there is an m > (1 − δ)V such that when

P1 offers a split of m he asks x(m) for himself and when P2 offers such a split he

asks y(m) 6= x(m). By Lemma 4 x(m), y(m) < m and therefore, by Lemma 2, the
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responder is indifferent between the rejection and acceptance of m − z(m), for each

z(m) ∈ {x(m), y(m)}. Therefore

m− x(m) + δV = δy(m) + δ2V,

and

m− y(m) + δV = δx(m) + δ2V.

Therefore m+ δ(1− δ)V = x(m) + δy(m) = y(m) + δx(m). Since δ ∈ (0, 1), x(m) =

y(m)—a contradiction.

Lemma 6. Consider a stationary equilibrium whose value is V . The proposer’s

demand function is given by:

dV (m) =

m if m ≤ (1− δ)V ,

m+δ(1−δ)V
1+δ

otherwise.

Proof. We already saw in Lemma 4 that if m ≤ (1− δ)V then the proposer demands

the entire pie for himself. Consider then m > (1 − δ)V . By Lemma 4, the proposer

offers a strictly positive pie share to the responder, and therefore, by Lemma 2, the

responder is indifferent between its acceptance and rejection. Denoting the equilib-

rium offer by (x,m− x), we see that Lemma 5 implies that m− x+ δV = δx+ δ2V ,

hence x = m+δ(1−δ)V
1+δ

, as argued.

Lemma 7. The value of a stationary equilibrium is V = me

2(1−δ) .

Proof. By Lemmas 1 and 6, the value satisfies the following equation:

V =
1

2
{
∫ (1−δ)V

0

tdF (t)t+

∫ M

(1−δ)V
dV (t)dF (t)}+

+
1

2

∫ M

(1−δ)V
[t− dV (t)]f(t)dF (t) + δV,

which is uniquely solved by V = me

2(1−δ) .
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Theorem 1 follows from Lemmas 1, 6, and 7.

The following properties of the equilibrium are verified straightforwardly. First,

the demand converges to the entire pie as δ → 0. Second, the proposer always

demands more than half the pie. Third, the demand converges to the average of the

pie-size and the equilibrium’s per-period-equivalent value (namely me

2
) as δ → 1.

4 Conclusion

Within an economy to which a stochastic pie arrives once a period, I have considered

a game that has two distinct phases: “business as usual” and “dispute.” As long as

business is as usual a proposer and responder are selected every period randomly and

bargaining over the current pie takes place; once disagreement occurs play moves to

the dispute-phase, where the disputed pie is Rubinstein-bargained over, and all the

new pies that arrive during the dispute are lost. The unique stationary equilibrium is

such that when the pie size is below a certain cutoff the proposer demands the entire

pie, and otherwise the pie is split non-trivially between the players. This result is

intuitive: when there is only a small amount at stake, the player who happens to have

the “temporary monopoly power” can exploit it, and the other player won’t object

since objection is too costly in terms of the losses of future social surplus that it can

potentially cause. When a lot is at stake, the responder would not agree to such

greedy behavior since the potential for current payoff is too large to ignore, and since

the cost of dispute is small relatively to the present surplus that needs to be divided.

I have focused on stationary equilibria. I suspect that the game does not have a

non-stationary subgame perfect equilibrium, but I do not have a proof for this con-

jecture. Another open problem is the generalization of the result to the case where

the players’ discount factors differ. Several of the arguments involved in the Lemmas

relay on the players’ symmetry, and generalizing them is not straightforward. Such a

generalization remains, at present, a task for future research.

11



Acknowledgments: Effective comments by two anonymous referees are greatly ap-

preciated.

References

[1] Binmore, K., 1987. Perfect equilibria in bargaining models. The Economics of

Bargaining, Basil Blackwell, Oxford.

[2] Fershtman, C. and Seidmann, D.J., 1993. Deadline effects and inefficient delay in

bargaining with endogenous commitment. Journal of Economic Theory, 60, pp.306-

321.

[3] Merlo, A. and Wilson, C., 1995. A stochastic model of sequential bargaining with

complete information. Econometrica, 63, pp.371-399.

[4] Osborne, M.J. and Rubinstein, A., 1990. Bargaining and markets. Academic

press.

[5] Rubinstein, A., 1982. Perfect equilibrium in a bargaining model. Econometrica,

50, pp.97-109.

12


