Strategic and stable pollution with finite set of economic agents and a finite set of consumption commodities: a Pareto comparison

Avishay Aiche, Hovav Perets & Benyamin Shitovitz

Economic Theory Bulletin
ISSN 2196-1085
Econ Theory Bull
DOI 10.1007/s40505-015-0080-x
Your article is protected by copyright and all rights are held exclusively by Society for the Advancement of Economic Theory. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
Strategic and stable pollution with finite set of economic agents and a finite set of consumption commodities: a Pareto comparison

Avishay Aiche1 \hspace{1em} Hovav Perets2 \hspace{1em} Benyamin Shitovitz1

Received: 27 July 2015 / Accepted: 1 September 2015
© Society for the Advancement of Economic Theory 2015

\textbf{Abstract} In this paper, we apply the framework of a public bad economy with a finite set of economic agents and a finite set of consumption commodities. The pollution of an agent is emitted into the air while consuming his consumption goods. A linear public bad economy model with a single private good had been introduced in Shitovitz and Spiegel (Econ Theory 22(1):17–31, 2003) and here we reconsider its extension to finite number of private goods and prove existence of a core ‘trading’ allocation (Perets et al. J Math Econ 48(3):163–169, 2012) that Pareto dominates the Nash allocation. This mathematical model embodies the restriction of consumption by all polluting agents, to decrease the amount of the public bad, affecting the whole economy, worldwide. Note specifically that the Lindahl allocation may not Pareto dominate the Nash allocation in some finite economy, in contrast to well-known asymptotic results.

\textbf{Keywords} Game theory · Pollution · Core · Pareto Domination

1 Department of Economics, University of Haifa, Haifa, Israel
2 Faculty of Industrial Engineering and Management, Technion, Israel Institute of Technology, Haifa, Israel

Published online: 24 September 2015
JEL Classification C71 - C72

1 Introduction

This paper discusses the notion of a core 'trading' allocation (Perets et al. 2012) that Pareto dominates the Nash allocation in pure public 'bad' economies, introduced by Shitovitz and Spiegel (2003). The economy contains a finite set of economic agents who consume a finite number of consumption commodities; the consumption of these commodities produces the public bad which is 'pollution' that is emitted into the air and has a negative effect on all the agents in the economy.

Under the Nash non-cooperative concept, each consumer assumes that the pollution emitted by all other consumers is not affected by her own emission. Under this assumption, extending (Perets et al. 2012), we prove the existence of the non-cooperative Nash equilibrium in the current paper for a model with linear pollution, with a finite number of private goods and one public bad.

In a seminal paper, Champsaour (1975) provided a proof that the core of an economy with one private good and one public good is a vN&M stable set. Based on this result and Peleg (1986), Shitovitz and Spiegel (2001) proved that there exists a core allocation that Pareto dominates the inefficient Nash allocation, in the same model, with a finite number $n \geq 2$ of consumers. This result has been generalized in Perets et al. (2012) to such economy with a mixed measure space of consumers.

The main result of our paper states that, in such a general model, there exists a core allocation that Pareto dominates the unique Nash allocation. Our economic game model is specific for our analysis, to use the result of both Peleg (1986) and Demange (1987), that the core of an ordinal convex game is externally stable.

The paper is organized as follows: Section 2 presents economies with a finite number of private goods and a pure public bad with a finite number of consumers. In Sect. 3, we define the linear pollution model. In Sect. 4, we prove the existence of the Nash equilibrium in our pure public 'bad' economy. In Sect. 5, we define the core notion in our model and prove our main theorem (existence of core allocation which Pareto dominates the Nash allocation).

2 The pure public 'bad' economy

We reconsider an economy E with a finite set $N = \{1, 2, \ldots, n\}$ of economic agents and K private commodities. The vectors $c^i \in \mathbb{R}^K$ represent units of private commodities (goods) each agent $i \in N$ consumption is restricted to the amount given in the i's initial endowment vector ω^i. We assume that $0 \leq c^i \leq \omega^i$ for all agents. Following the model of a public bad economy, let $G \geq 0$ represents units of the pure public bad commodity (e.g., pollution). The utility of each consumer $i \in N$ is given by the function $u^i (c^i, G)$ defined on the appropriate subset of \mathbb{R}_+^{K+1}. It is assumed that agents derive positive marginal utility from the private commodities and negative marginal utility from the pure public bad. As a pure public commodity, the same quantity G is the 'Pollution' equally affecting all agents in the public bad economy. In the consumption of an agent, the by-product pollution units are emitted as a result. We assume that G,
the pure public bad, is the sum of all units of pollution emitted irrespective of their source. Let $E = \{n; \omega^1, \ldots, \omega^n; u^1, \ldots, u^n\}$ denote this finite economy.

3 The model of a linear pollution economy

We consider the pure public bad economy E. We assume that each consumer i is initially endowed with a strictly positive amount $\omega_i \in R^K_+$ of the private goods. Each consumer decides how much to consume from her initial endowment, and hence, as a by-product, its level of pollution units emitted is assumed to be 'linear'. That is, the level of pollution $\hat{g}_i = \sum_{k=1}^K \alpha_k c_{i,k}$. Let $\hat{G} = \sum_{i \in N} \hat{g}_i$ be the level of the aggregate pollution emitted in the economy. By changing units and replacing utilities, we assume that $\alpha_k = 1$ for all $k = 1, \ldots, K$.

Apply now our assumptions above, and let obtain after 'normalization' that the utilities are given by $u_i : [0, W]^K \times [0, W] \rightarrow R_+$ where $W = \sum_{k=1}^K \sum_{i \in N} \omega_i k$. We assume that u_i are continuous functions and $u_i(c_i, G) = 0$ if either $c_i \in \partial R^K_+$ or $G = W$. Moreover, on $(0, W]^K \times (0, W)$, $u_i(c_i, G)$ are strictly quasi-concave and strictly monotonic increasing in c_i (the private goods), and strictly monotonic decreasing in G (the pollution).

4 Existence of Nash equilibrium in a pure public ‘bad’ economy

The Nash pollution level is characterized by the non-cooperative game theoretic notion of Nash equilibrium. When maximizing her utility, each consumer needs to choose her optimal consumption bundle $c_i^* \in R^K_+$ such that $0 \leq c_i^* \leq \omega_i$ so the Nash n-tuple strategy $s^* = (c_i^*)_{i \in N}$ constitutes Nash equilibrium in the non-cooperative game with utilities $U^i(c_1, \ldots, c_n) = u^i(c_i, G)$ where $G = G_i^* + \hat{g}_i = \sum_{j \neq i} \hat{g}_j + \hat{g}_i$ where $\hat{g}_i = \sum_{k=1}^K c_{i,k}$ and similarly $\hat{g}_j = \sum_{k=1}^K c_{j,k}^*$ for $j \neq i$. Note that by our assumptions on the utilities and the linear technology of pollution, it follows that all $U^i(c_1, \ldots, c_n)$ are continuous in all variables and quasi-concave in the vector variable c_i over the desired strategy sets.

Proposition 1 Our finite economy admits a unique Nash allocation. We denote it by \((c_i^*)_{i \in N}, G^*)\) where of course we have $G^* = \sum_{k=1}^K (\sum_{i \in N} c_{i,k})^*$.

Proof Follows immediately from Nash Theorem. \(\square\)

Remark 1 By our assumptions, the Nash allocation satisfies \(((c_i^*)_{i \in N}, G^*)\) $\in (0, W]^K \times [0, W)$.

Remark 2 The Nash equilibrium is the most applied non-cooperative solution concept in game theory. But in general, the Nash allocation is not efficient. We proceed to the most cooperative solution concept, the core, which encompasses both efficiency and stability. We formalize a relationship between these solution concepts to answer positively this inefficiency problem for public bad economies, raised by many researchers (e.g., Coase 1960, Chichilnisky and Heal 1994). Note that in this finite framework of a
finite game' the Lindahl allocation may not Pareto dominate the Nash allocation, and therefore we need further properties of the core of our economy, to prove the existence of a core allocation which Pareto dominates the Nash allocation.

5 The core

The cooperative NTU game \((N, V)\) of our public bad economy is given by: for the empty coalition we have \(V(\emptyset) = \emptyset\). For any nonempty coalition \(S \subset 2^N\)

\[
V(S) = \left\{ u \in R^N_+: \sum_{i \in N \setminus S} \omega_i, k + \sum_{i \in S} c_{i,k} \leq \omega_i, \forall i \in S \right\}
\]

Proposition 2 The cooperative NTU game \((N, V)\) of our public bad economy is an ordinal convex game. That is, \(V(S_1) \cap V(S_2) \subseteq V(S_1 \cup S_2) \cup V(S_1 \cap S_2)\) for \(S_1, S_2 \subset N\). (Note that in particular we have a stronger property: \(V(S_1) \cap V(S_2) \subseteq V(S_1 \cup S_2)\).)

Proof Assume \(\tilde{u} \in V(S_1) \cap V(S_2)\). Then, there exist \(\{c_i' \in R^N_+\}_{i \in S_1}, G' \in R^N_+\) and \(\{c_i'' \in R^N_+\}_{i \in S_2}, G'' \in R^N_+\), that satisfy \(\tilde{u}^i \leq u^i(c_i', G')\), \(\forall i \in S_1\) with \(\tilde{u}^i \leq u^i(c_i'', G'')\), \(\forall i \in S_2\). Assume w.l.o.g. that \(G' \leq G''\). Define the consumption commodity bundles for \(S_1 \cup S_2\) by \(\tilde{c}_i = \begin{cases} c_i' & i \in S_1 \\ c_i'' & i \in S_2 \setminus S_1 \end{cases}\) and therefore \(\tilde{G} = G'\). Then:

\[
\tilde{u}^i \leq u^i(\tilde{c}_i, G') = u^i(c_i', G'), \forall i \in S_1,
\]

and

\[
\tilde{u}^i \leq u^i(\tilde{c}_i, G'') \leq u^i(\tilde{c}_i, G') = u^i(\omega_i, G'), \forall i \in S_2 \setminus S_1.
\]

Thus, \(\tilde{u} \in V(S_1 \cup S_2)\). \(\square\)

Remark 3 We want to apply the result of Peleg (1986) to the core of the NTU game, which states that the core of an ordinal convex game is a Von Neumann and Morgenstern (1944) solution. Indeed, the ordinal convex game \((N, V)\) satisfies all the Peleg's conditions, (by the continuity and the monotonicity properties of the utilities, and Proposition 2). Thus, the core \(C(N, V)\) is a Von Neumann–Morgenstern stable set and hence is externally stable.

Remark 4 To obtain our main result (Theorem 1 below), we assume now further assumptions on the utility functions:

(A.1.) \(u_i(c_i, G)\) are continuously differentiable and have non-vanishing partial derivatives on \((0, W)^K \times (0, W)\).

\(\copyright\) Springer
(A.2.) The slope of the indifference curve with respect to \(c_{i,k}\) and \(G\), defined as:

\[
MRS_{c_{i,k}}^{G} G = -\frac{\partial G}{\partial c_{i,k}} (c_{i}, G) \text{ depends only on } \{c_{i,k}, G\}, \text{ and is strongly monotonic increasing in } \{c_{i,k}, G\}\text{ on } (0, W)^K \times (0, W).
\]

Remark 5 (A.1.) and (A.2.) under strict quasi-concave utilities are equivalent to \(\{c_{i,k}\}_{k=1,\ldots,K}\) are strictly normal commodities and the pollution \(G\) is a strict inferior commodity (see Perets et al. 2012 and Appendix A).

Remark 6 Note that under assumptions (A.1.) and (A.2.), our public bad economy admits a unique Nash equilibrium (see Perets and Shitovitz (2013) and Appendix B).

Theorem 1 In our public bad economy, any Nash allocation is (weakly) Pareto dominated by some allocation in the core \(\bar{C}(N, V)\).

Proof Let \((c_{i}^{*}, G^{*})_{i \in N}\) be a Nash allocation, and \(u_{i}^{*} = u_{i}(c_{i}^{*}, G^{*})\) for each \(i \in N\). If \(u^{*} \in C(N, V)\), then trivially the core allocation \((c_{i}^{*}, G^{*})\) induces the Nash utilities. Otherwise, since the core is a Von Neumann–Morgenstern stable set, by external stability, there exist nonempty coalition \(S \subseteq N\) and \(\tilde{u} \in C(N, V)\cap V(S)\) such that \(u_{i}^{*} > u_{i}^{*}\) for \(i \in S\). By definition of \(V(S)\), there exists allocation \((\tilde{c}_{i})_{i \in S}, \tilde{G}\) which satisfies \(\tilde{u}_{i} \leq u_{i}(\tilde{c}_{i}, \tilde{G})\) for each \(i \in S\). We prove now that \(\tilde{u} > u^{*}\).

Case 1 \(\tilde{G} \leq G^{*}\). Assume by negation that there exists a consumer \(j \in N\setminus S\), for whom \(u_{j} < u_{j}^{*}\). Then, the coalition \(S \cup \{j\}\), with allocation \((\tilde{c}_{j})_{i \in S}, \tilde{G}\) and \((c_{j}^{*}, G^{*})\) for consumer \(j\) blocks \(\tilde{u}\) via \(S \cup \{j\}\). Indeed, we have \(u_{i}(c_{j}^{*}, G^{*}) \geq u_{i}(c_{j}^{*}, G^{*}) \geq u_{i}(\tilde{c}_{j}, G^{*}) > u_{i}(\tilde{c}_{j}, \tilde{G})\), and for all \(i \in S\) we have equality. As, by Remark 1, \((c_{j}^{*}, G^{*})\) is in \((0, W)^K \times (0, W)\), we obtain a contradiction to \(\tilde{u} \in C(N, V)\).

Case 2 \(\tilde{G} > G^{*}\). Since \(u_{i}(\tilde{c}_{i}, \tilde{G}) < u_{i}(c_{i}^{*}, G^{*})\) for all \(i \in S\) and \(k \in K\) that satisfy \(\tilde{c}_{i,k} > c_{i,k}^{*}\) and by definition of \(V(S)\) we have also \(\tilde{c}_{i,k} < \omega_{i,k}\). Therefore, \(0 < c_{i,k}^{*} < \omega_{i,k}\). Thus, using the F.O.C. for the Nash maximization problem, of the interior solution \(c_{i,k}^{*}\), we have:

\[
\frac{\partial u_{i}}{\partial c_{i,k}^{*}} (c_{i}^{*}, G^{*}) + \frac{\partial u_{i}}{\partial G} (c_{i}^{*}, G^{*}) = 0.
\]

Hence, \(MRS_{c_{i,k}}^{G} G (c_{i}, G) = \frac{\partial G}{\partial c_{i,k}} (c_{i}, G) = 1\). By (A.2.), \(MRS_{c_{i,k}}^{G} G\) depends only on \((c_{i,k}, G)\), and is strongly monotonic increasing in \((c_{i,k}, G)\) on \((0, W)^K \times (0, W)\), by \(c_{i,k}^{*} > c_{i,k}\) and \(\tilde{G} > G^{*}\) it follows that \(MRS_{c_{i,k}}^{G} G (c_{i}, \tilde{G}) > 1\). Therefore \(\frac{\partial u_{i}}{\partial c_{i,k}} (\tilde{c}_{i}, \tilde{G}) + \frac{\partial u_{i}}{\partial G} (\tilde{c}_{i}, \tilde{G}) < 0\). Obviously, we have \((\tilde{c}_{i}, \tilde{G}) \in R^{K+1}_{++}\), therefore, it follows that there is \(\varepsilon > 0\) such that \(u_{i}(\tilde{c}_{i} - \varepsilon e_{k}, \tilde{G} - \varepsilon) > u_{i}(\tilde{c}_{i}, \tilde{G})\). Thus, \(S\) blocks \(\tilde{u}\) using \((\tilde{c}_{j}, \tilde{G} - \varepsilon)\) for \(i \in S\setminus \{j\}\) and \((\tilde{c}_{i} - \varepsilon e_{k}, \tilde{G} - \varepsilon)\) for \(i \in S\setminus \{j\}\). Contradicting \(\tilde{u} \in C(N, V)\). \(\square\)

Appendix A: Strict ordinal normality of the utilities and the normality properties of the commodities

(A.1.) and (A.2.) under strict quasi-concave utilities are equivalent to \((c_{i,k})_{k=1,\ldots,K}\) being strictly normal commodities and the pollution \(G\) is a strict inferior commodity.
Proof. For C^2, strict quasi-concave utility function $u(c,G)$, on $(0,W]^K \times [0,W]$, we have that the marginal rate of substitution between G and c_k is denoted by $MRS_{G-c_k} = \frac{\partial u_G}{\partial c_k} = -\frac{u_{c_k} u_{G} - u_{c_k} u_{G} u_{c_k} u_{G}}{(u_{c_k})^2}$ and depends only on (c_k,G).

1. Assume first that (A.1) and (A.2) hold, that is:
 \[
 \frac{\partial u_G}{\partial c_k} = \frac{u_{c_k}}{u_{G}} < 0, \quad \frac{\partial^2 u_G}{\partial c_k^2} = \frac{u_{c_k}}{u_{G}} > 0
 \]
 Then, it follows that $u_{c_k} G \cdot u_{c_k} G \cdot u_{G} < 0$, and $u_{G} \cdot u_{c_k} G \cdot u_{c_k} G \cdot u_{G} < 0$, for all $k = 1, \ldots, K$ on $(0,W]^K \times [0,W]$. Since $l > 0$ and $(p_1, \ldots, p_K) >> 0$, it follows that the F.O.C. for the consumer maximization problem for $(\tilde{c}, \tilde{G}) \in \mathbb{R}^K_{++}$ is
 \[
 \frac{d \tilde{c}}{d \tilde{G}} = \frac{u_{G}(\tilde{c})}{u_{c_k}(\tilde{c}) \tilde{G}(\tilde{c})} \tilde{G}(\tilde{c}) \tilde{G}(\tilde{c})
 \]
 Assuming the function is differentiable at $((\tilde{c}_k)_{k \in K}, \tilde{G}) \in (0,W]^K \times [0,W]$, the partial derivatives of both sides, with respect to l, implies that
 \[
 u_{c_k} \left(\sum_{k=1}^{K} u_{G} \cdot \frac{d \tilde{c}_k}{d \tilde{G}} + u_{G} \cdot \frac{d \tilde{G}}{d \tilde{G}} \right) = u_G \left(\sum_{k=1}^{K} u_{G} \cdot \frac{d \tilde{c}_k}{d \tilde{G}} + u_{G} \cdot \frac{d \tilde{G}}{d \tilde{G}} \right)
 \]
 That is equation (A)
 \[
 \frac{d \tilde{c}_k}{d \tilde{G}} \cdot (u_{G} \cdot u_{c_k} G - u_{c_k} u_{G} G) + \sum_{k \neq k'} \frac{d \tilde{c}_k}{d \tilde{G}} (u_{c_k} \cdot u_{G} G - u_{c_k} u_{G} G) = \frac{d \tilde{G}}{d \tilde{G}} \cdot (u_{G} \cdot u_{c_k} G - u_{c_k} u_{G} G)
 \]
 Since $\frac{d \tilde{G}}{d \tilde{G}} = 0$, we have $\frac{d \tilde{c}_k}{d \tilde{G}} = 0$. Combining the latter with $u_{G} \cdot u_{c_k} G - u_{c_k} u_{G} G = 0$. Thus, for all $k = 1, \ldots, K$, $(\tilde{c}_k)_{k=1}^{K}$ are strictly normal goods and \tilde{G} is an inferior good.

2. Now assume that $\frac{d \tilde{G}}{d \tilde{G}} < 0$ and $\frac{d \tilde{c}_k}{d \tilde{G}} > 0$ for every $k = 1, \ldots, K$.

Since the utility function of each consumer is strictly quasi-concave, it follows that by the convexity of the preference relation induces by the utility $u(\tilde{c},\tilde{c}, G) = \tilde{U}$ is strictly quasi-concave in (c_k, G) which induces a strictly convex preference relation on $(0,W] \times [0,W]$. Since, $U(c_k, G) = u(\tilde{c}, c_k, G)$, as $u_k = \frac{\partial u}{\partial c_k} U(c_k, G) = \frac{u_{c_k} G}{u_{c_k} G} u(\tilde{c}, c_k, G)$ it follows that $U_k = \frac{u_{c_k} G}{u_{c_k} G} u(\tilde{c}, c_k, G)$ and as we are only interested in $MRS_{G-c_k}^{U} \mid_{\tilde{c} = \tilde{c}} = MRS_{G-c_k}^{u} \mid_{\tilde{c} = \tilde{c}} = \frac{\partial u(\tilde{c}, c_k, G)}{\partial c_k} |_{\tilde{c} = \tilde{c}}$. We will use the function $u(\tilde{c}, c_k, G)$ to finish the proof.

By (Mas-Colell et al. 1995 p. 938 Example M.D.2), we have that the determinant of the bordered Hessian satisfies:

\[
\begin{vmatrix}
U_{c_k c_k} & U_{c_k G} & U_{c_k} \\
U_{c_k G} & U_{GG} & U_{G} \\
U_{c_k} & U_{G} & 0 \\
\end{vmatrix} > 0,
\]

the determinant equals:

\[
2U_{c_k} U_{c_k G} U_{G} - U_{c_k c_k} U_{G} U_{G} - U_{c_k} U_{GG} U_{G} > 0.
\]

Note that all partial derivatives of U are actually the corresponding partial derivatives of u.

Which is $U_{G}(U_{c_k} U_{c_k G} U_{G} - U_{c_k c_k} U_{G} U_{G} - U_{c_k} U_{GG} U_{G}) > 0$.

\[\text{Springer}\]
By the derivation of the FOC with respect to \(i \), we get equation (\(\lambda \)) which yields that \((UC_i, UC_i G - UC_i U G)\) and \((UC_i G, UC_i U G - UC_i U GG)\) have opposite signs, combining with \(UC_i U G < 0 \) and \(UC_i > 0 \) and the last inequality, we may conclude that \((UC_i G, UC_i U G) > 0 \) and \((UC_i G, UC_i U G) < 0 \). Thus, the strict ordinal normality conditions for the utility \(a \) holds as \(UC_i = UC_i G = UC_i G U G \) and \(UC_i = UC_i G \) where all other coordinates are \(\hat{c}_{i,k} \). Note that for each \((e, G) \in (0, W) \times (0, W) \) by the strict quasi-concavity and differentiability, we have unique supporting hyperplane through \((e, G) \) such that \((e, G) = (\hat{e}, \hat{G})\) is the interior solution for these prices. \(\square \)

6 Appendix B: Uniqueness of Nash equilibrium

Under assumptions (A.1.) and (A.2.) our pollutive economy admits a unique Nash equilibrium.

Proof Assume by negation that there are two Nash equilibria \(s^* \) and \(s^{**} \), and we further assume \(G^* \geq G^{**} \). Thus, if \(\forall i \in N, \forall k \in \{1, \ldots, K\}, c_i^{s^*} \geq c_i^{s^{**}} \), then obviously by summation \(s^* = s^{**} \). Else, \(\exists i \in N, \exists k \in \{1, \ldots, K\}, c_i^{s^*} > c_i^{s^{**}} > 0 \). Since, \(\omega^*_i \geq c_i^{s^*} > c_i^{s^{**}} \), it follows that for \(s^{**} \), from the Nash maximization problem for the interior solution \(c_i^{s^{**}} \), we have \(u_i^{s^*}(c_i^{s^*}, G^{s^*}) + u_i^{s^*}(c_i^{s^*}, G^{s^{**}}) = 0 \), implying \(MRS_{G-c_i^{s^*}}(c_i^{s^*}, G^{s^*}) = 1 \). By (A.2), we have that \(MRS_{G-c_i^{s^*}}(c_i^{s^*}, G^{s^*}) \geq MRS_{G-c_i^{s^{**}}}(c_i^{s^{**}}, G^{s^{**}}) = 1 \). Therefore, \(u_i^{s^*}(c_i^{s^*}, G^{s^{**}}) < 0 \) implying there is \(\varepsilon > 0 \) with \(\omega_i^{s^*} \geq c_i^{s^*} - \varepsilon > 0 \) such that \(u_i(c_i^{s^*} - \varepsilon, G^* - \varepsilon) > u_i(c_i^{s^*}, G^*) \) contradicting that \(s^* \) is a Nash equilibrium. \(\square \)

References

Champsaur, P.: How to share the cost of a public good? Int J Game Theory 4, 113–129 (1975)

