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Abstract

Brams and Taylor (1994) presented a version of the Divide-the-dollar game

(DD), which they call DD1. DD1 suffers from the following drawback: when

each player demands approximately the entire dollar, then if the least greedy

player is unique, then this player obtains approximately the entire dollar even if

he is only slightly less greedy than the other players. I introduce a parametrized

family of 2-person DD games whose “endpoints” (the games that correspond to

the extreme points of the parameter space) are (1) a variant of DD1, and (2) a

game that completely overcomes the greediness-related problem. I also study an

n-person generalization of this family. Finally, I show that the modeling choice

between discrete and continuous bids may have far-reaching implications in DD

games.
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1 Introduction

Dividing a limited resource among a group of agents is one of the most basic eco-

nomic problems there are. The Divide-the-dollar game, henceforth DD, is one of the

simplest models of this problem. The rules of DD are as follows: each of n players

submits a demand (or bid) xi ∈ [0, 1]; if
∑n

i=1 xi ≤ 1, then each player obtains what

he asked for; otherwise—i.e., if the sum of demands exceeds the available resource—

no one gets anything. Each player’s utility equals the amount of money he receives.1

DD has two major drawbacks: first, any split of the dollar is supported as a Nash

equilibrium outcome; second, even the slightest degree of infeasibility—when the sum

of demands equals 1+ε, with ε > 0 being arbitrarily small—leads to a complete waste

of the social resource. These shortcomings led researchers to consider modifications

of DD in order to overcome them.

In particular, Brams and Taylor (1994, henceforth BT) considered several variants

of DD, one of which—a game they call DD1—will be of special interest in the present

paper. The rules of DD1 are as follows. Given the vector of demands, the players

are partitioned into equivalence classes, according to the amount they demand. Each

player in the set of the lowest bidders—the first equivalence class—receives what he

asks for if there is enough money to do so; otherwise, the dollar is divided evenly

among these players. If there is money left after the just-mentioned step has been

applied, the second equivalence class is considered, to which the same rule is applied.

This process continuous in the same fashion until (i) the dollar is exhausted, or (ii)

each player received his demand. DD1 overcomes the drawbacks that were mentioned

in the previous paragraph: the entire dollar is distributed to the players if the sum of

1The 2-person version of this game is a simple version of a slightly more general 2-person game,

called the Nash demand game (Nash, 1953). DD also has “dual” mechanisms, where each player

reports how much he thinks others should obtain; such mechanisms have been studied by De Clip-

pel et al. (2008) for n ≥ 3 players. A multi-stage DD game has been studied by Cetemen and

Karagözoğlu (2014).
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demands is at least one, and the equilibrium-multiplicity problem is significantly miti-

gated.2 Unfortunately, DD1 suffers from a new drawback: when each player demands

approximately the entire dollar, then if the least greedy player is unique, then this

player obtains approximately the entire dollar even if he is only slightly less greedy

than the other players. For instance, if there are two players and the demands are

0.98 and 0.99 the payoff are (0.98, 0.02). The main contribution of the present paper

is a parametrized family of 2-person DD games that generalizes DD1. The parameter

value which is associated with each family member, λ ∈ [0, 1], captures the degree to

which the greediness-related problem can occur. The higher is λ, the smaller is the

scope of the problem. When λ = 1, the problem is completely solved. On the other

hand, small values of λ allow for severe punishment of the most greedy player.3

Another issue I address is the fact that the analysis in BT is carried out for the

case of discrete bids. Namely, there is a minimal money-unit—a “cent”—and all de-

mands must be multiples of it. There are two reasons to relax this assumption.

First, the “cent” takes the form δ = 1
nK

, where n is the number of players and K is

some positive integer. Therefore, the model contains an unbreakable link between the

number of players and the grid of currency—two conceptually unrelated quantities.

Second, one would like to set up the environment in a way that gives some flex-

ibility in altering the rules of the game; namely, an environment in which a variety

of DD games can be defined. The discreteness assumption hurts this flexibility. To

illustrate the point with a concrete example, consider the following DD game, DD∗,

due to Anbarci (2001). In its 2-person version, when the demands are infeasible,

namely when x1 +x2 > 1, each player i receives the payoff fixi, where fi ≡ 1−xi
xj

. The

2DD1 has multiple Nash equilibria, but they are all payoff-equivalent. In any equilibrium each

player obtains the egalitarian utility level.
3Abusing terminology a little, I call any divide-the-dollar game a DD game. A general DD game

is a game which is identical to the canonical DD that was described in the first paragraph of this

Introduction, with the sole exception that when the sum of demands exceeds one, the dollar need

not be wasted—it (or a fraction of it) can be distributed in some way among the players.
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economic rationale behind this rule is as follows. When player 1 makes his demand,

he offers player 2 the amount 1 − x1. Since player 2 demands x2, it is as if player

1 asks player 2 to settle for a fraction f1 of what player 2 asks for himself, where

f1 ≡ 1−x1
x2

. Similarly, player 2 asks player 1, effectively, to settle for a fraction f2 of

what player 1 asks for himself, where f2 ≡ 1−x2
x1

. Now, if it is legit to expect your

fellow bargainer to settle for a fraction f of his demand, then, one may argue, it is

perfectly fine to require that you, the proposer, would also settle for this fraction out

of what you wish for yourself. This is the logic of Anbarci’s game. Since the fi’s

are, by definition, fractions, DD∗ is not well-defined under discrete demands. For

example, consider the most basic case, where the minimal money-unit is 0.01; here,

if player 1 demands x1 = 0.6 and player 2 demands x2 = 0.51, then player 1’s payoff

is f1x1 = 0.24
0.51

, which is not a multiple of cents.

In reality money is discrete, hence one may argue that this discreteness should

be reflected in the model. My point is that even though discreteness is realistic, it

expresses a constraint which should not be at the center stage of the analysis. The

money-continuity assumption, which is typical to bidding games, is therefore in place.

The rest of the paper is organized as follows. In Section 2 I present a list of con-

ditions for DD games, due to BT, called reasonableness conditions. In Section 3 I

revisit DD1, but, as opposed to BT, under the assumption that money is continu-

ous (an assumption I will maintain throughout the paper). I denote the DD1 game

under continuous demands by cDD1. Both DD1 and cDD1 are reasonable. The

choice between continuity and discreteness of money has far-reaching implications.

In DD1 there are multiple (payoff equivalent) Nash equilibria and an equilibrium can

be arrived by iteratively removing weakly dominated strategies; additionally, in the

2-person DD1, as in any 2-person reasonable DD game with discrete demands, the

egalitarian demand level is weakly dominated.4 By contrast, in cDD1 the vector of

egalitarian demands is the unique Nash equilibrium, and the egalitarian demand level

4See Theorem 1 in BT.
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is not a weakly dominated strategy. In Section 4 I present the family of 2-person DD

games {DDλ}λ∈[0,1]. The generalization of {DDλ}λ∈[0,1] to n bidders is in Section 5.

In Section 6 I conclude.

2 The reasonableness conditions

BT specify five conditions for DD games, which are satisfied, in particular, by DD1.

They call any DD game that respects these conditions reasonable. The conditions are:

(1) Equal treatment of equal demands.

(2) No player’s payoff is more than his demand.

(3) If the sum of the demands does not exceed one, then each player receives his

demand.

(4) If the sum of the demands exceeds one, then the dollar, nevertheless, is completely

disbursed to the players.

(5) If all demands are greater than the egalitarian level demand, the player with

the highest demand does not receive a higher payoff than the player with the lowest

demand.

3 cDD1: the DD1-game with continuous demands

Suppose that each player can submit any demand in [0, 1]. In particular, there is no

minimal money-unit. I now define a DD1-type game for this environment. To this

end, the following notation and definitions will be helpful.

Every profile of demands, x = (x1, · · · , xn) ∈ [0, 1]n, can be partitioned into

equivalence classes according to the values of its coordinates. An equivalence class

consists of the coordinates that assume the same value; namely, it is a set of the

form {i, j : xi = xj}. Suppose that these classes are labeled “from the bottom up,”
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so higher demands belong to higher-indexed classes. Let ki and Ii be the following

functions of demand: ki(x) denotes the number of class to which player/coordinate

i belongs (so xi < xj implies ki(x) < kj(x)) and Ii(x) denotes the number of play-

ers/coordinates that are in the same equivalence class as player/coordinate i. The

continuous version of DD1—hereafter cDD1—is the DD game the utility functions of

which are the following:

ucDD1
i (x) ≡



xi if
∑
{j:kj(x)≤ki(x)} xj ≤ 1

1
Ii(x)

if ki(x) = 1 and
∑
{j:kj(x)=1} xj > 1

1−
∑

{j:kj(x)<ki(x)}
xj

Ii(x)
if ki(x) > 1 and

∑
{j:kj(x)<ki(x)} xj < 1 ≤

∑
{j:kj(x)≤ki(x)} xj

0 otherwise

Proposition 1. cDD1 is a reasonable DD game. The profile ( 1
n
, · · · , 1

n
) is its unique

Nash equilibrium. The egalitarian demand, xi = 1
n

, is not a weakly dominated strategy

in this game.

Proof. Note that conditions (1) and (3)-(5) are straightforward. As for condition

(2), note that the only way for player i to obtain a payoff above xi is if his payoff

obeys the third line from the definition of the utility function. In this case, to have the

payoff exceed the demand one needs
1−

∑
{j:kj(x)<ki(x)}

xj

Ii(x)
> xi, or 1−

∑
{j:kj(x)<ki(x)} xj >

xiIi(x), which contradicts 1 ≤
∑
{j:kj(x)≤ki(x)} xj. Therefore, cDD1 is reasonable.

As for equilibrium uniqueness, first note that ( 1
n
, · · · , 1

n
) is indeed an equilibrium:

any demand deviation downward decreases one’s payoff and any deviation up leaves

it unchanged. Now let x be an arbitrary equilibrium. Let l be the common demand

in its first equivalence class (namely, l is the minimum demand in x).

Case 1: xi = l for all i. It has to be that ln ≥ 1; namely, the demands exhaust the

dollar. Otherwise, if ln < 1, then each player could increase his payoff by deviating

to l+ ∆, where ∆ = 1− (n−2)l (so l+ ∆ = 1− (n−1)l). Therefore ln ≥ 1, or l ≥ 1
n
.

Next, I argue that l > 1
n

is impossible. The reason is that in this case each player

could increase his payoff by deviating to some l′ ∈ ( 1
n
, l). Therefore, x = ( 1

n
, · · · , 1

n
).
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Case 2: There is an i with xi > l. Let m be the common bid of the second

equivalence class. Let k be the number of players in the first equivalence class. I argue

that kl ≥ 1; namely, the sum of minimal demands exhausts the dollar. Otherwise,

each of the lowest bidders could strictly benefit by deviating to l+∆, for ∆ ∈ (0,m−l).

Note that by doing that a deviator becomes a singleton second equivalence class and

his payoff, consequently is one of the following two: (a) l + ∆ > l—in case that

his demand can be met after all the k − 1 minimal bidders have been paid; or (b)

1− (k − 1)l > l—in case that there is not enough money left to satisfy his demand.

Thus, kl ≥ 1. Next, I argue that kl > 1 is impossible; this is due to the same reason

as in Case 1—in such a case an infinitesimal deviating downwards is strictly profitable

for each of the minimal bidders. Therefore l = 1
k
, and the dollar is shared equally

between the minimal bidders. But this, in turn, means that each i with xi > l is not

playing a best-response. Therefore, ( 1
n
, · · · , 1

n
) is the unique equilibrium.

Finally, we need to prove that xi = 1
n

is not weakly dominated; wlog, consider

i = 1. Assume by contradiction that the egalitarian demand is dominated for player

1. Let z be some other demand that weakly dominates the egalitarian demand. Since

it is possible for all other players to demand zero, it has to be that z > 1
n
. Pick a

y ∈ ( 1
n
,min{z, 1

n−1
}). Weak domination implies:

u1(z, y, y, · · · , y) ≥ u1(
1

n
, y, y, · · · , y).

By the rules of the game, the LHS equals 1− (n− 1)y and the RHS equals 1
n
. Hence,

we obtain the contradiction y ≤ 1
n
.

Proposition 1 shows that there is a significant difference between the current model

and the discrete-money model. In the latter, any reasonable 2-person DD game is such

that the egalitarian demand level is a weakly dominated strategy. In particular, this

applies to DD1. By contrast, the egalitarian demand level is not weakly dominated

in cDD1. Moreover, DD1 has multiple Nash equilibria, whereas cDD1 has a unique

equilibrium.
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4 Punishing greediness: A generalization of the

2-person cDD1

When there are two players, both versions of the game—DD1 and cDD1—suffer from

the following drawback. According to the rules of these games, when both players are

extremely greedy, a tiny difference in their demands makes the player who is slightly

less greedy receive an overwhelming share of the dollar. For instance, if the demands

are 0.98 and 0.99 the payoff are (0.98, 0.02).

Say that a 2-person DD game with utility functions {u1, u2} has an inequality

parameter γ if:

γ ≡ limε↓0[u2(1− ε, 1− 2ε)− u1(1− ε, 1− 2ε)].

A small value of γ prevents the aforementioned problem, as a small γ means that

when the two players are extremely greedy (each demands, approximately, the entire

dollar) then there may be discrimination against the one who is more greedy, but there

are limits to discrimination; specifically, the limits of discrimination are given by γ.

Note that γ, by definition, is between zero and one. Therefore, cDD1’s performance

in this regard is the worst possible, since its inequality parameter is γ = 1.5

While a low value of γ is obviously desirable, a high value of γ also has an upside,

at least under condition (4) from the BT list. Note that when the demands are jointly

infeasible and one player is more greedy than the other, we may wish to punish this

player, which means giving him a low payoff; but by condition (4) this means giving a

relatively high payoff to the other player, which, in turn, results in a high value for the

inequality parameter. Therefore, there is a tradeoff between two competing principles:

(i) similar treatment of greedy players, versus (ii) awarding the least greedy player.6

5For cDD1 we have u2(1 − ε, 1 − 2ε) − u1(1 − ε, 1 − 2ε) = 1 − 2ε − 2ε. Therefore γ = 1 for this

game.
6In the 2-person case principle (ii) is equivalent to punishing the most greedy player.
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Below is a parametrized family of 2-person DD games, in which the parameter that

corresponds to each family member captures this tradeoff.

Given λ ∈ [0, 1], let DDλ denote the 2-person DD game in which the utility of

player 1 is as follows and that of player 2 is defined analogously:

uλ1(x, y) ≡



x if x+ y ≤ 1 (i)

λx
1+x

if x+ y > 1 and x > y ≥ 1+(1−λ)x
1+x

(ii)

1+(1−λ)y
1+y

if x+ y > 1 and y > x ≥ 1+(1−λ)y
1+y

(iii)

1
2

if x+ y > 1 and x = y (iv)

ucDD1
1 (x, y) otherwise (v)

In words, the rules of the game are as follows. If the demands are jointly feasible then,

like in any DD game, each player receives his demand. If not, then the players split

the dollar evenly in case they submitted equal demands; if they submitted different

demands then the player who is more greedy receives λz
1+z

where z is his demand, but

only if giving the rest of the dollar to the other player does not make the other player

end up with an amount that exceeds his demand; in any other case the rules of cDD1

are implemented. It is easy to verify that DDλ is reasonable for every λ ∈ [0, 1].

Also, note that DD0=cDD1, because with λ = 0 (ii) and (iii) can never be realized.

Therefore, {DDλ}λ∈[0,1] is a generalization of cDD1.

Proposition 2. For each λ ∈ [0, 1), the game DDλ has a unique Nash equilibrium:

(1
2
, 1

2
).

Proof. The case λ = 0 was covered in Theorem 1. Fix then a λ ∈ (0, 1) and consider

the corresponding game. First, let us verify that (1
2
, 1

2
) is indeed an equilibrium.

Wlog, consider player 1. Obviously, decreasing his demand is suboptimal. If he

increases it then the resulting case is either (ii) or (v). In the former case his payoff is

λx
1+x
≤ λ

2
< 1

2
. In the latter case his payoff is without a change—1

2
. Therefore, (1

2
, 1

2
)

is a Nash equilibrium.

Now let (x, y) be an equilibrium. Clearly, x + y ≥ 1. I argue that x + y = 1. To
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see this, assume by contradiction that x+ y > 1. Suppose first that x 6= y; wlog, that

x > y. Either (ii) or (v) hold. If (ii) is the case then x = 1 and therefore player 1’s

payoff is λ
2
, which is smaller than 1

2
—which is what player 1 can achieve by playing y.

If (v) is the case then y < 1+(1−λ)x
1+x

, which is impossible in equilibrium, because player

2 could increase his demand by a sufficiently small ε > 0 and increase his payoff (note

that as long as we are in case (v) player 2’s payoff equals his demand, since it is given

by the payoff rule of cDD1). Therefore, if x+ y > 1 then x = y. This, again, cannot

occur in equilibrium because by a small decrease of his demand player 1 can increase

his payoff. To see this, let us consider two cases separately.

Case 1: If y > 1+(1−λ)y
1+y

then by an infinitesimal decrease of his demand player 1

can obtain a payoff which is approximately 1+(1−λ)y
1+y

, and 1+(1−λ)y
1+y

> 1
2
.7

Case 2: y ≤ 1+(1−λ)y
1+y

. Here, by deviating to y − ε player 1 triggers the DD1

payment rule, and therefore obtains y − ε > 1
2
.

Therefore, if (x, y) is an equilibrium, then x+ y = 1.

Now suppose, wlog, that x < 1
2
. Then player 1 has a profitable deviation: from x

to 1− x. Therefore, (1
2
, 1

2
) is the unique equilibrium.

As λ increases the most greedy player is being penalized less severely. The inequality

parameter of DDλ is γ = 1 − λ. Hence, there is a tradeoff between minimizing the

inequality parameter and decreasing the incentive to be greedy. This tradeoff results

in the fact that when the inequality parameter is minimized, extreme greediness can

occur in equilibrium.

Proposition 3. The set of DD1’s Nash equilibria is {1
2
, 1} × {1

2
, 1}.

Proof. That (1
2
, 1

2
) is an equilibrium follows from precisely the same argument as in

the proof of Proposition 1.

Consider (1, 1). By the rules of the game (the demands are in the unit interval),

7This inequality is equivalent to 2 + 2(1 − λ)y > 1 + y or 1 + y[2(1 − λ) − 1] > 0. The latter

inequality is true because its LHS, which is strictly decreasing in λ is strictly greater than 1−y ≥ 0.
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the only possible deviation is downwards. Consider, wlog, such a deviation by player

1. The possible cases that player 1 can trigger by his deviation are (i), (iii), and (v).

Obviously triggering (i)—namely, deviation to 0—is suboptimal. In case (iii) player

1’s payoff does not change—it remains 1
2
. Finally, in order to trigger (v) it needs to

be that the demand to which player 1 deviates, call it x, satisfies x < 1
2
; since in

this case player 1’s payoff receives his demanded amount (by the rules of cDD1), the

deviation is strictly suboptimal. Therefore, (1, 1) is an equilibrium.

Now consider (1, 1
2
). A deviation by player 1 that causes (i) is clearly unprofitable,

and conditional on (ii) x = 1 is optimal. Case (iii) is impossible since y = 1
2
, and in

case (iv) player 1’s payoff remains 1
2
. Finally, (v) is also sub-optimal: since player 2

demands y = 1
2
, player 1 cannot get more than 1

2
under the cDD1 rules. Therefore

player 1 does not have profitable deviation. Now consider player 2. A deviation

that triggers (i) is a deviation to zero and is clearly sub-optimal. Conditional on

(ii), player 2’s payoff is without a change. Case (iii) is impossible since x = 1. A

deviation to y = 1—namely to case (iv)—does not change his payoff. Finally, under

(v) player 2 obtains his demand, but since x = 1 it follows that (v) can be realized

only if player 2’s demand is below 1
2
. Therefore (1, 1

2
) is an equilibrium. Similarly,

(1
2
, 1) is an equilibrium.

Now let (x, y) be an arbitrary equilibrium. Consider first x 6= y; wlog, x > y.

Clearly, (i) is impossible. Therefore, x + y > 1. Also, (v) is impossible, since in this

case player 2 can increase his payoff by increasing his demand. Cases (iii) and (iv) are

impossible and we are therefore led to (ii), and therefore to x = 1. If y ∈ {1
2
, 1}, we

are in one of the equilibria encountered above. If not, then y ∈ (1
2
, 1). If y ≤ −1+

√
5

2
,

then by deviating to x′ ∈ (1
2
, y) player 1 triggers case (v) and increases his payoff to

x′ > 1
2
. If y > −1+

√
5

2
then by deviating to x′′ ∈ ( 1

1+y
, y) player 1 triggers case (iii)

and increases his payoff to 1
1+y

> 1
2
. Finally, consider the case x = y ≡ z. Clearly

z ≥ 1
2
. If z ∈ {1

2
, 1}, we are in one of the equilibria encountered above. If not, then

z ∈ (1
2
, 1). If z ≤ −1+

√
5

2
, then by deviating to x′ ∈ (1

2
, z) player 1 triggers case (v)
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and increases his payoff to x′ > 1
2
. If z > −1+

√
5

2
then by deviating to x′′ ∈ ( 1

1+z
, z)

player 1 triggers case (iii) and increases his payoff to 1
1+z

> 1
2
.

5 An n-person generalization of DDλ

Here is a generalization of {DDλ}λ∈[0,1] to an arbitrary numbers of players, n ≥ 2.

Let Π be the set of permutations on {1, · · · , n}. Fix θ ∈ [0, 1
n−1

]. For each π ∈ Π let

Xπ
θ ⊂ [0, 1]n be the set of demand vectors x that satisfy the following four conditions:

• (I)
∑

i xi > 1.

• (II) xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n−1) > xπ(n).

• (III) xπ(k) ≥
θxπ(1)

1+xπ(1)
for all k = 1, · · · , n− 1.

• (IV) xπ(n) ≥
1+[1−(n−1)θ]xπ(1)

1+xπ(1)
.

Define DDθ to be the n-person DD game with the utility functions {uθ1, · · · , uθn} that

are defined as follows. On [0, 1]n \ (∪π∈ΠX
π
θ ), uθi = ucDD1

i . On Xπ
θ , uθi is defined by:

uθi (x) ≡


θxπ(1)

1+xπ(1)
if i 6= π(n)

1+[1−(n−1)θ]xπ(1)
1+xπ(1)

otherwise

To make this definition more transparent, let us look at the case where π is the

identity. Consider then x ∈ Xπ
θ where π is the identity. Each i < n obtains θx1

1+x1

and player n obtains the remainder of the dollar, 1+[1−(n−1)θ]x1
1+x1

. Note that for n = 2

DDθ=DDλ, where λ = θ. Analogously to λ = 0 from the 2-person case, θ = 0

corresponds to cDD1.

It is easy to verify that DDθ is reasonable and that ( 1
n
, · · · , 1

n
) is an equilibrium

of this game. The following result describes an additional condition under which it is

the game’s unique equilibrium.

Proposition 4. Let θ ∈ [0, 2
2n−1

). Then ( 1
n
, · · · , 1

n
) is DDθ’s unique Nash equilibrium.
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Proof. Let θ be as above. Let θn ≡ 1 − (n − 1)θ. By assumption, θn >
1

2n−1
. For

each π ∈ Π let Dπ
θ be the set of demand vectors that are one deviation away from

Xπ
θ . That is, x ∈ Dπ

θ if and only if x /∈ Xπ
θ and there exist a player i and a vector

x′ ∈ Xπ
θ such that xj = x′j for all j 6= i.

Let x be an equilibrium of DDθ. I argue that there does not exist a π ∈ Π such

that x ∈ Xπ
θ ∪Dπ

θ . Assume by contradiction that such a π exists. Wlog, suppose that

it is the identity.

Case 1: x ∈ Xπ
θ . Since x is an equilibrium, x1 = 1. The payoff for player i < n is

θ
2
. I argue that every such i has a profitable deviation. Note that when he deviates

and ties with the minimum bidder (i.e., the deviation is xi 7→ xn) he secures the payoff

min{1
2
, xn}, because he triggers the cDD1 payment rule. Thus, if xn ≥ 1

2
he secures

the payoff 1
2
; the deviation is profitable, since 1

2
> θ

2
. Suppose then that 1

2
> xn.

Since every i should find the abovementioned deviation non-profitable, it follows that

xn ≤ θ
2
. Therefore (n − 1)xn ≤ 1

2
(1 − θn). Since x ∈ Xπ

θ and x1 = 1 it follows that

xn ≥ θn.8 Therefore (n − 1)θn ≤ 1
2
(1 − θn). Rearranging this gives θn ≤ 1

2n−1
, a

contradiction.

Case 2: x ∈ Dπ
θ . First, note that the minimum demand is not unique. To see

this, assume by contradiction that there is a permutation η such that xη(1) ≥ xη(2) ≥

· · · ≥ xη(n−1) > xη(n). Wlog, suppose that η is the identity.

Claim 1: xn <
1+θnx1
1+x1

.

Proof of Claim 1: Assume by contradiction that xn ≥ 1+θnx1
1+x1

. Since x is an

equilibrium,
∑
xi ≥ 1. Moreover, this inequality is strict. If not then xn <

1
n
, and

we obtain:

1 + θn
2
≤ 1 + θnx1

1 + x1

≤ xn <
1

n
,

hence θn <
2
n
−1 ≤ 0, a contradiction. Therefore, condition (I) holds. Since (II) holds

by assumption and (IV) holds by assumption, it follows that (III) is violated. Namely,

8xn ≥ 1+θn
2 and 1+θn

2 ≥ θn.
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there is an i < n such that xi <
θx1

1+x1
. Since xi > xn we obtain the contradiction

θx1
1+x1

> xi > xn ≥ 1+θnx1
1+x1

. Claim 1 is proved.

It follows from Claim 1 that if player n increases his demand by a sufficiently small

amount then the resulting demand vector would still be outside of ∪θXθ and hence

the payment rule would still be as in cDD1. Therefore, this deviation is profitable.

Thus, there is a “tie” at the minimum demand. Moreover, only two players are tied at

the minimum demand level; otherwise, the demand vector would not be one deviation

away from ∪θXθ. Therefore, x1 ≥ · · · ≥ xn−2 > xn−1 = xn. Let t ≡ xn = xn−1.

Claim 2: t ≥ 1+θnx1
1+x1

.

Proof of Claim 2: Recall that ∪θXθ is reachable by one deviation. Consider the set

of all such deviations. If there does not exist such a deviation in which the deviator

is player 1 and he undercuts t, then necessarily t ≥ 1+θnx1
1+x1

. The reason is that after

such a deviation the maximal bid remains x1 and the minimum bid strictly decreases.

The new (post deviation) minimum has to be at least as large as 1+θnx1
1+x1

. Suppose,

on the other hand, that there is a deviation in which player 1 is the deviator. In this

case, the new (post deviation) maximum is x2. Call the new minimum t′. Clearly

t′ < t. Therefore, t < 1+θnx1
1+x1

implies t′ < 1+θnx1
1+x1

. Since the new demand vector must

respect conditions (I)-(IV), it follows that 1+θnx2
1+x2

≤ t′ and therefore 1+θnx2
1+x2

< 1+θnx1
1+x1

implying that x2 > x1—a contradiction. Claim 2 is proved.

Now, since t ≥ 1+θnx1
1+x1

≥ 1+θn
2

> 1
2
, the dollar is divided evenly between players

{n, n− 1}. By deviating to t− ε, for a sufficiently small ε > 0, player i ∈ {n, n− 1}

secures a payoff of at least min{t− ε, 1+θnx1
1+x1

} > 1
2
.

Therefore, as argued, there does not exist a π ∈ Π such that x ∈ Xπ
θ ∪Dπ

θ .

Now assume by contradiction that the equilibrium, x, satisfies x 6= ( 1
n
, · · · , 1

n
).

By Proposition 1, x is not an equilibrium of cDD1. Therefore, under the cDD1 rule

there is a player, say h, who has a profitable deviation. Let x′ be the demand

vector that results from the deviation. Therefore, ucDD1
h (x′) > ucDD1

h (x). Since

x /∈ ∪π∈ΠX
π
θ it follows that uθh(x) = ucDD1

h (x). Since x /∈ ∪π∈ΠD
π
θ it follows that

14



x′ /∈ ∪π∈ΠX
π
θ . Therefore uθh(x

′) = ucDD1
h (x′). Therefore ucDD1

h (x′) > ucDD1
h (x) implies

uθh(x
′) > uθh(x); hence x is not an equilibrium of DDθ—a contradiction.

The inequality parameter for the n-person case is defined analogously to the 2-person

case:

γ ≡ limε↓0[un(1− ε, 1− 2ε, · · · , 1− nε)− u1(1− ε, 1− 2ε, · · · , 1− nε)].

As we noted, θ = 0 is analogous to λ = 0 from the 2-person case, and the corre-

sponding inequality parameter assumes the value γ = 1. For θ such that θn < 1

the value of DDθ’s inequality parameter is 1+θn−θ
2

, the minimum of which is obtained

at θ = 1
n−1

. Thus, the inequality parameter is bounded from below by n−2
2(n−1)

. As

n → ∞ the set of DDθ’s converges to cDD1 and the lower bound on the inequality

parameter converges to 1
2
. In this sense, solving the greediness problem by employing

DDθ becomes increasingly more difficult as the number of players increases.

6 Conclusion

DD games involve a tradeoff between two competing principles: (i) similar treatment

of greedy players, versus (ii) awarding the least greedy player. I have captured this

tradeoff parametrically by the family {DDλ}λ∈[0,1], and by its n-person generalization.

A secondary and more technical contribution of the paper has been in pointing out to

the fact that the choice between continuous and discrete money may have substantial

implications in DD games.

Acknowledgments: I would like to thank Amnon Maltz for helpful comments.

15



References

[1] Anbarci, N. (2001), Divide-the-dollar game revisited, Theory and Decision, 50,

295-303.

[2] Brams, S.J. and Taylor, A.D., (1994), Divide the dollar: Three solutions and

extensions, Theory and Decision, 37, 211-231.
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