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Abstract. We study the asymptotic nucleolus of a smooth and
symmetric oligopoly with an atomless sector. We show that un-
der appropriate assumptions, the asymptotic nucleolus of the TU
market game coincides with the unique TU competitive payoff dis-
tribution x

∗. This equivalence results from nucleolus of a finite
game belonging to its core and the Aumann Core Equivalence,
which holds for this economy due to the cut-throat competition
among the identical large players. A comparison with the Shapley
value yields that in some cases, the asymptotic Shapley value is
more favorable for the large traders than the asymptotic nucleolus
x
∗. This may be interpreted by the ‘fairness property’ of Shap-

ley Value which does not reflect the intense competition among
the large traders, accounting for the relative importance of their
marginal contribution. J.E.L. Classification numbers. C71, D40,
D43.

1. Introduction

We examine a mixed differentiable game, proposed by Aumann [1],
with a few identical big (atomic) players and a continuum of small ones.
Whether the big players get a better allocation in a core as compared
to a competitive one in a mixed game has been analysed in general by
Shitovitz [11], and in this work we continue investigating the “power”
of big players under alternative solution concepts.1 There are several
types of players. Each type of player has a “corner endowment”. The
worth of a coalition is the maximal output they can produce using
their aggregate endowments and all the technologies available to them.
Our main result is that the asymptotic core (the limit of the cores
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of the finite games converging to the initial one, i.e., games in the
admissible sequence) of the game with identical big players coincides
with the competitive (transferable utility competitive equilibrium, ortu
e) payoff. As a consequence, the asymptotic nucleolus (defined
for finite games by [9]) is the tu
e payoff distribution as well. This
is in contrast with the monopoly case, studied in [3], where nucleolus
is strictly better for the monopoly than the tu
e (hence nucleolus
capturing the additional “power” enjoyed by the monopoly). Moreover,
we conjecture that each of the identical atoms gets a higher payoff under
asymptotic Shapley value than in the asymptotic core.

2. The Model

2.1. Agents. Let T (= T0∪T1) be the set of players, Σ be the set of all
possible coalitions of the players and λ be the “population measure”
so that (T,Σ, λ) is a measure space, where λ is a σ−additive positive
measure on Σ. The set of players is partitioned into T1, big players
(the atoms of λ) and T0, the small players, i.e., λ = λ0 + λ1, where
λ0 is non-atomic (with support T0), and λ1 has finite support T1 and
coincides with the counting measure.

Let µ = (µ1, .., µM) be a vector of countably additive non-trivial
measures absolutely continuous with respect to λ.

Let f : RM
+ → R be a non-decreasing concave and homogeneous of

degree one, zero on the boundaries, continuously differentiable in a
neighbourhood of µ(T ). Let p = ∇f(µ(T )). Assume p ∈ RM

+ , p 6= 0.

2.2. The induced game. For all S ∈ Σ, V (S) = f(µ(S)).

Remark 1. Define x∗(S) = pµ(S) for all S ∈ Σ. Since f is homogeneous
of degree one, by Euler theorem, pµ(T ) = f(µ(T )) and by concavity
of f for all z ∈ RM

+ , f(z) ≤ f(µ(T )) + p(z − µ(T )) = pz. Thus for all
S ∈ Σ, x∗(S) = pµ(S) ≥ f(µ(S)) = V (S). It follows that x∗ is in the
core of V .

2.3. Players’ types. There are L types of players, so T is partitioned
by {Al}l: ∪lAl = T , for any l 6= l′, Al ∩ Al′ = ∅. dµm

dλ
for all m ∈

{1, . . . ,M} is constant for any l on T0 ∩Al and µ is constant for any l

on the atoms of T1 ∩ Al.
Let r ≥ 2 be the greatest common divisor of the numbers of big

players of different types: λ(T1 ∩ A1), . . . , λ(T1 ∩ AL). Let Sr = 1
r
T

be a coalition of players such that for every S ′ ⊂ Sr, there is S ⊂ T ,
containing players of the same types as S ′ such that λ(S) = λ(S ′)r, so
that T is an r-replica of Sr.

2.4. The admissible sequence of finite games.

Definition 1. An admissible sequence of finite games is defined by an
increasing sequence, (πn)

∞
n=1, of finite subfields of Σ, with the corre-

sponding set of all atoms Πn of πn, such that
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(1) πn ⊂ πn+1 for every n = 1, 2 . . . ;
(2) every subset of T1 is in π1;
(3) for every l, T0 ∩Al ∈ π1;
(4) for any n, any two “small” players of the same type in, jn ∈ Πn,

in, jn ⊂ T0 ∩ Al, are of the same size λ(in) = λ(jn);

(5) r is also a divisor of λ(Al∩T0)
λ(in)

∀in ∈ Πn, in ⊂ T0∩Al, i.e., for every

n there is a natural number k such that λ(Al ∩ T0) = krλ(in);
(6) and ∪∞

n=1πn generates Σ.

Remark 2. So, Πn can be thought of as the set of all players of the
finite game, with the set of all its subsets (coalitions) being identified
with πn, as in [3, p.191].

Denote the restriction of the game V to πn by Vn.

Remark 3. By def. 1.(4)-(5), the definition of the core and [2] for any n

any two “small” players of the same type in, jn ∈ Πn, in, jn ⊂ T0 ∩ Al

and any two big players of the same type have the “equal treatment”
property. The same holds for the nucleolus since there any two ex-
changeable players get the same allocation.

3. Results

3.1. Asymptotic core of the induced game.

Theorem 1. Let xn be in the core of Vn. Then limn→∞ xn(S) =
pµ(S)(= x∗(S)) for every S ⊂ T0, S ∈ π1.

Proof. By rem. 1 the core of any game in the admissible sequence is non-
empty. Since S is in π1, it is a finite union of some disjoint coalitions
i ∈ π1 (or players in Π1). S being a subset of T0 implies that all such
i are subsets of T0 too. Since the admissible sequence is increasing,
S ∈ πn for any n. Let Bn ⊂ Πn be the finite set of disjoint in ⊂ T0

such that their union is S.
For any game Vn and any player in ∈ Bn, since xn is a core allocation,

xn(
1
r
T ) + xn(in) = xn(

1
r
T ∪ in) ≥ f(µ(1

r
T ) + µ(in)),

xn(
1
r
T )− xn(in) = xn(

1
r
T\in) ≥ f(µ(1

r
T )− µ(in))

Since xn is additive (being a measure) and by rem. 3 xn(
1
r
T ) = 1

r
xn(T ),

and by homogeneity of degree one of f , f(µ(1
r
T )) = 1

r
f(µ(T )). As

xn(T ) = Vn(T ) = f(µ(T )), it follows that xn(
1
r
T ) = f(µ(1

r
T )). Com-

bining with the inequalities above, we get

f(µ(1
r
T ) + µ(in))− f(µ(1

r
T )) ≤ xn(in) ≤ f(µ(1

r
T ))− f(µ(1

r
T )− µ(in))

By the homogeneity of f , ∇f(µ(T )) = ∇f
(

1
r
µ(T )

)

and since f is
(continuously) differentiable in the neighbourhood of µ(T ), it is so in
an ε-neighbourhood of 1

r
µ(T ) = µ(1

r
T ). For any such ε there is N0

sufficiently large, such that for all n > N0 one can assure µ(in) < ε for
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any in ∈ Bn, so for n > N0, by concavity of f , the last inequality can
be re-written as

∇f
(

µ(1
r
T ) + µ(in)

)

µ(in) ≤ xn(in) ≤ ∇f
(

µ(1
r
T )− µ(in)

)

µ(in)

By continuity of ∇f in the ε-neighbourhood of µ(1
r
T ), there is δ̄ ∈ RM

++

such that for any 0 < δ < δ̄ there is N1 ≥ N0 such that for any n > N1,
∇f

(

µ(1
r
T ) + µ(in)

)

≥ ∇f(µ(1
r
T )) − δ = p − δ. Similarly, there is

N2 > N0 such that ∀n > N2, ∇f
(

µ(1
r
T ) − µ(in)

)

≤ p + δ. So, for all
n > max{N1, N2} the inequality becomes

(

p− δ
)

µ(in) ≤ xn(in) ≤
(

p+ δ
)

µ(in)

Summing over all in ∈ Bn,
(

p− δ
)

µ(S) ≤ xn(S) ≤
(

p+ δ
)

µ(S)

Taking the limit as δ → 0, we get the result. �

3.2. Asymptotic nucleolus of the induced game.

Corollary 1. Let Nn be a nucleolus of n-th game in the admissible
sequence. Then limn→∞Nn(S) = pµ(S) for every S ⊂ T0, S ∈ π1.

Proof. By [9, thm. 4] nucleolus belongs to every non-empty core of a
finite game. The core of every game in the admissible sequence is
non-empty by remark 1. The result follows from thm. 1. �

3.3. The market game. Now assume that players of type l have the
same concave homogeneous-of-degree-one technology Fl : RM

+ → R,
strictly increasing, differentiable on RM

++, zero on the boundaries; and
the same endowment, ω(t) = ωl ∈ RM

+ , ωl 6= 0 for t ∈ Al. Each type
has a corner endowment : for every l ∈ {1, . . . , L} there is an input
ml ∈ {1, . . . ,M} such that any player of type l has this input: ωml

l > 0,
but none of the other types has it: ∀l′ 6= l ωml

l′ = 0 . All the big players
of the same type have the same measure. So, for any S let µ(S) =
∑L

l=1 ωlλ(S∩Al). Then µm is a countably additive non-trivial measure,
absolutely continuous with respect to λ for any m ∈ {1, . . . ,M}.

As in [10], [1], define the market game as follows.

Definition 2. For any S ∈ Σ, let an S−feasible allocation be a profile
x = (x1, . . . , xM), such that for any m ∈ {1, . . . ,M}

(1)

∫

S

xm(t)dλ(t) ≤ µm(S)

(2) v(S) = sup
{

∑

l

∫

S∩Al

Fl(x(t))dλ(t)
}

where the supremum is taken over all S−feasible allocations x.



MARKET GAMES WITH LARGE PLAYERS 5

Notation 3.1. Denote by Σ̄ the set of coalitions that contain all types:
S ∈ Σ̄ ⇒ λ(Al ∩ S) > 0 ∀l.

A collection of integrals
(

∫

A
xm(t)dλ(t)

)M

m=1
, A ⊂ T , xm(t) ∈ R+

will be denoted simply by
∫

A
x(t)dλ(t) for x(t) ∈ RM

+ .

3.4. The induced form representation of the market game.

Theorem 2. There exists f : RM
+ → R such that v = f ◦ µ, where f

is a non-decreasing concave homogeneous of degree one function, zero
on the boundaries, and continuously differentiable in the interior.

Proof. First, v(S) = 0 for any coalition that does not contain a positive
fraction of at least one type, since then the integral over all Fl is zero.
Next, v(S) is bounded for any coalition S ∈ Σ̄ (that contains all types):
by concavity, for any type l

(3)

∫

S∩Al

Fl(x(t))dλ(t) ≤ λ(S ∩Al)Fl

( 1

λ(S ∩Al)

∫

S∩Al

x(t)dλ(t)
)

so, the boundedness follows by S−feasibility of allocation x (def. 2) (im-
plying the last integral is finite). Second, the supremum is attained: by
inequality 3, for any S the maximization problem reduces to the prob-
lem of optimal allocation of inputs across L technologies, i.e., finding
(Xl)

L
l=1 ∈ RML

+ that maximizes continuous function (Xl)l 7→
∑

l λ(S ∩
Al)Fl(Xl) on a compact support

∑

l λ(S ∩ Al)Xl ≤
∫

S
ω(t)dλ(t). By

homogeneity of Fl, this problem is equivalent to

max
xl

{
∑

l

Fl(λ(S ∩ Al)Xl) :
∑

l

λ(S ∩Al)Xl ≤ z}

=max
yl

{
∑

l

Fl(yl) :
∑

l

yl ≤ z}

Define f(z) = maxyl{
∑

l Fl(yl) :
∑

l yl ≤ z}. So, f(µ(S)) = v(S). The
required properties of f follow from those of Fl. �

3.5. Uniqueness of the asymptotic core for symmetric oligopoly.

Corollary 2. If every big player t ∈ T1 is of the same type, then the
asymptotic core is x∗, since the “equal treatment” applies to big players,

each of whom gets p(µ(T )−µ(T0))
|T1| = pµ({t}).

Corollary 3. If every big player in T1 is of the same type, then the
asymptotic nucleolus is also x∗.

3.6. A transferable utility competitive equilibrium.

Definition 3. A transferable utility competitive equilibrium (tu
e) of
the economy is a T-feasible allocation z and a price p ∈ RM

+ , p 6= 0
such that for every t ∈ Al and ∀l, z∗(t) solves maxg Ul(g, pω(t)− pg),
where Ul(g, y) : RM

+ ×R→ R : Ul(g, y) ≡ Fl(g) + y.
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For a tu
e price p define a tu
e payoff distribution to be u∗(S) =
∑

l

∫

Al∩S Ul(z
∗(t), pω(t)− pz∗(t))dλ(t).

3.7. The asymptotic core is a TUCE allocation.

Lemma 1 (based on Einy, Moreno, and Shitovitz [3]). In a symmetrictu
e (or if Fl are strictly quasiconcave) u∗ = x∗.

Proof. First, the tu
e price has to be strictly positive for all inputs,
p ∈ RM

++, since if the price of at least one commodity is zero, at least one
of the types will have an unbounded demand which can not be covered
by the bounded aggregate endowment of that input. Therefore, since
z∗(t) is optimal, it is either zero or strictly positive: z∗(t) ∈ RM

++, so
∇Fl(z

∗(t)) is well defined and equal to p. Since Fl is homogeneous
of degree one, for every l, and every x ∈ RM

++, Fl(x) = ∇Fl(x)x. If
z∗(t) ∈ RM

++, then the equilibrium payoff of this player is pz∗(t) +
pω(t)− pz∗(t) = pω(t) for a given tu
e price p. Otherwise z∗(t) = 0,
and since Fl(0) = 0, the player gets pω(t). Clearly, this implies that for
any coalition S ⊂ T , the payoff it gets is

∑

l

∫

Al∩S pω(t)dλ(t) = pµ(S)

by definition of µ(S).
Next, since Fl are differentiable on RM

++, ∇f(µ(T )) is well defined.
It is left to show that the tu
e price p is = ∇f(µ(T )) ∈ RM

++. Indeed,
first, in a symmetric tu
e allocation (almost) all agents of the same
type chose the same allocation (which is true in any tu
e if Fl are
strictly quasiconcave), denote them by z∗l respectively. Since all types
get a strictly positive payoff in equilibrium and the allocation is Pareto
for every l z∗l λ(Al) solves

max
{yl}l,yl∈RM

+

G(y,W ) ≡
∑

l

Fl(yl) :
∑

l

yl ≤ W

Since the value of this problem is by definition f(µ(T )), for every l such
that z∗l ∈ RM

++, we have ∇f(µ(T )) = ∇Fl(z
∗
l λ(Al)), which is strictly

positive since Fl is strictly increasing on RM
++. Further, since F is CRS,

∇Fl(λ(Al)z
∗
l ) = ∇Fl(z

∗
l ), which is equal to p if z∗l ∈ RM

++ by consumer
optimisation. �

3.8. Asymptotic Shapley value for a simple duopoly game.

Consider the following simple duopoly. There are two types of play-
ers. The small players are of the first type and their total endowment
is ω0. Let T0 = [0, 1] and let λ0 be the uniform measure. Each of
the two big players (a1, a2) has endowment ω1, they are of equal size:
λ1(ai) = 1. Let F : RM

+ → R, absolutely continuous, be the “best”
production function (with the highest output) available to the players.

Proposition 1. The asymptotic Shapley value for a simple duopoly
game (with absolutely continuous production) allocates

∫ 1

0

[

F (tω0+ω1)+

t(F (tω0 + 2ω1)− 2F (tω0 + ω1))
]

dt to any big player.
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Proof. Any (finite) game in an admissible sequence should have n small
players and two big ones. Each of the small players holds 1

n
ω0. The

(marginal) contribution of any big player to a coalition of k small play-
ers is h1(

k
n
), where h1 : t 7→ F (tω0 + ω1); while the contribution to a

coalition already containing a big player and k small ones is h2(
k
n
),

h2 : t 7→ F (tω0 + 2ω1)− F (tω0 + ω1).
There are (n + 2)! possible permutations of all players. For any

position k of the first big player there are (n + 2 − k)n! permutations
where the second big player follows the first, while in the rest ((k−1)n!)
the opposite is true. Therefore Shapley value for a big player ai is

[φVn]({ai}) = n!
(n+2)!

[

∑n+2
k=2(k − 1)h2

(

k−2
n

)

+
∑n+1

k=1(n+ 2− k)h1

(

k−1
n

)

]

=
∑n+2

k=2
1

n+1
k−1
n+2

h2

(

k−2
n

)

+
∑n+1

k=1
1

n+1
(1− k

n+2
)h1

(

k−1
n

)

To establish the claim it is sufficient to show that the first summand
converges to

∫ 1

0
th2(t)dt and the second one converges to

∫ 1

0
(1−t)h1(t)dt

as n → ∞.
We demonstrate the latter in detail, the proof of the former is anal-

ogous and is left to the reader. Let gn(t) = (1 − nt+1
n+2

)h1(t), then

the second term can be written as a Lebesgue integral
∫ 1

0
zn(t)dµ of a

simple function zn returning a constant value gn(
k−1
n
) on ]k−1

n
, k
n
] for

k ∈ {1, n+ 1}, by definition of Lebesgue integral, since

∫ 1

0

zn(t)dµ =

n+1
∑

k=1

1

n + 1
gn(

k − 1

n
) ≤ h1(1) < ∞ ∀n

It is then left to show that zn converges uniformly on [0, 1] to the
function t 7→ (1− t)h1(t). Indeed, by triangular inequality,

sup
t

|(1− t)h1(t)− zn(t)| ≤ sup
t

|gn(t)− (1− t)h1(t)|+ sup
t

|zn(t)− gn(t)|

The first term can be made arbitrarily small for large enough n:

sup
t

∣

∣

∣

∣

(
nt + 1

n+ 2
− t)h1(t)

∣

∣

∣

∣

≤ 2

n+ 2
h1(1)

For the second term it follows from absolute continuity of F (and hence
h1) and thus gn on [0, 1]. Thus, the uniform convergence. �

Corollary 4. Let F (x, y) =
√
xy and ω0 = (x, 0), ω1 = (0, y) then the

Shapley value for the big player is above his tu
e payoff.

Proof. The tu
e payoff of a big player is equal to ∇F (ω0 + 2ω1)ω1 in
the economy with the simple duopoly. Using the specification of F , this
payoff is 1

2
√
2

√
xy, which is smaller than the Shapley value calculated

using proposition 1,
√
xy(2

3
− (2−

√
2)2

5
)). �
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4. Comments and a Conjecture

To restate: our main result is that if there is more than one big
player in a smooth economy, the asymptotic nucleolus assigns to every
big player an allocation with the same value as his competitive payoff.
One could interpret the result as reflecting the fierce competition among
the big players (e.g., à la Bertrand). However, Shapley value might
assign a better allocation to a big player than his competitive payoff,
and we conjecture this is true in general for an economy with several
big players (of the same type) and a smooth production.

Note that the asymptotic Shapley value in prop. 1 for a simple duopoly
corresponds to a heuristic based on the result of [4] showing that the
asymptotic Shapley value for scalar games of bounded variation (con-
verging to a mixed game) is one of the values of the mixed game char-
acterized by [7],2 such that the ‘location’ of every big player (in a
‘permutation’) is uniformly and independently distributed on the unit
interval. Indeed, then for the mixed game, the Shapley value allocates
∫ 1

0

∫ 1

t
h1(t)dzdt +

∫ 1

0

∫ t

0
h2(t)dzdt =

∫ 1

0
[(1− t)h1(t) + th2(t)]dt to a big

player. The asymptotic Shapley value to the syndicate (a single big)
player in [6] is also consistent with this heuristic calculation, and it can
be obtained directly using the similar argument to the proof of prop. 1,
which should be extendible to any number of big players of the same
type rather easily. Thus the main challenge in proving the conjecture
is showing that the inequality asserted in cor. 4 holds in general.
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