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Abstract
This paper discusses monetary and fiscal policy interactions that

stabilize government debt. Two distortions prevail in the economy:
income taxes and liquidity constraints. Possible obstructions to fiscal
policy include a ceiling on the equilibrium debt-to-GDP ratio, zero or
negative elasticity of tax revenues, and a political intolerance of raising
tax rates. In states of fiscal stress two mechanisms restore solvency:
fiscal inflation, which reduces the real value of nominal debt, and open
market operations, which diminish the size of government debt held
by the private sector. Three regimes achieve this goal. In all regimes
monetary policy is passive. In all regimes a muted tax response to
government debt is consistent with equilibrium. The propensity of
a fiscal authority to smooth output is found to determine what is
an acceptable response (in the form of tax rate changes) to the level
of government debt, while monetary policy determines the timing and
magnitude of fiscal inflation. Impulse responses show that the inflation
and tax hikes needed to offset a permanent shock to transfers are
lowest under nominal interest rate pegs, whereas most of the reduction
in government debt arrives from open market purchases.
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1 Introduction

This paper discusses stabilizing fiscal-monetary regimes at the ’fiscal limit’

where the government is able to increase tax revenues only by small amounts.

Fiscal limits imply that current deficits are financed mainly by increasing

government debt. Assuming no outright default, this regime is sustainable

only if market equilibrium brings about fiscal solvency. In this situation, the

valuation method of nominal government debt is the celebrated fiscal the-

ory of the price level whose canonical foundations are set in Leeper (1991),

Sims (1994), Woodford (1995), and Bassetto (2002). The contribution of

this paper is to extend the conventional treatment of monetary-fiscal policy

interactions, in which there is lump-sum taxation only, to an economy with

distortionary taxation, capital accumulation, and liquidity constraints. As

a result, the issue of nominal and real determinacy implies a new role for

monetary policy in a fiscal theoretic equilibrium that is not the classical pas-

sive stance. Specifically, this paper recognizes the crucial role of open market

operations in the stabilization of government debt, and specifies policy pre-

scriptions that restore fiscal solvency. Moreover, it demonstrates that some

interactions can substantially moderate the extent of fiscal inflation and fis-

cal consolidation required to stabilize government debt.
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Under the conditions I will discuss in this paper fiscal limits arise endoge-

nously from the underlying distortions and the requirement to run a balanced

budget in the long run. Capital accumulation and liquidity constraints induce

limitations on fiscal policy in a convincing way. In addition, the interaction

between monetary and fiscal policy is encumbered by actual practice of fiscal

policy in at least two dimensions:

I. In practice, fiscal authorities have limited or no access to lump-sum taxa-

tion and therefore mostly implement their policies by distorting taxes. This

practice can become very limiting as the economy approaches the peak of

its Laffer curves.1 Accordingly, my analysis does not rule out government

borrowing subject to zero elasticity tax revenues.

II. Political intolerance to raising tax rates can markedly limit fiscal policy.

Accordingly, my analysis does not rule out fiscal rules according to which tax

rates exhibit weak or mute responses to the state variables.

Prominent work on fiscal stress includes Cochrane (2011), Davig, Leeper and

Walker (2010, 2011), Davig and Leeper (2010), Sims (2011), and Bi, Leeper

and Leith (2012). This literature typically assumes that a blunt default is

1Trabandt and Uhlig (2010) estimate that tax rates in fourteen EU countries are slightly
below the peak of their respective Laffer curves, and Denmark and Sweden are on the wrong
side of the Laffer curve for capital income taxation.
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inconceivable to both lender and borrower and examines the impact of al-

ternative fiscal and monetary policy adjustments that ensure government

solvency. Fiscal solvency is mostly restored through fiscal inflation and an

expected future fiscal consolidation. Although in these models rapid bursts

of inflation are a feature of the equilibrium, they are considered very low

probability events that affect inflation expectations only through the small

probability that households attach to those bursts. However, as households

attach more probability to policy makers’ attempts to stabilize debt with

passive monetary policy, upward drift in inflation expectations and inflation

itself become more pronounced. In particular, Davig et. al. (2011) show

that without significant and meaningful fiscal policy adjustment, the task of

meeting inflation targets will become increasingly diffi cult.

My contribution builds on this literature. Capital accumulation and distor-

tionary taxation add a complication to aggregate dynamics since capital and

bonds are perfect substitutes in the households’portfolio. However, these

stores of value are in fact different from one another since the marginal prod-

uct of capital is distorted by a liquidity constraint and an income tax. As a

result, any policy response - either via the nominal rate of interest or via the

income tax rate - potentially drives households to transfer wealth between

4



bonds and capital, hence creating an arbitrage effect. In this story, if the

government encounters a fiscal stress it has access to two mechanisms to de-

value its debt: fiscal inflation that reduces the real value of nominal debt,

and open market purchases that reduce the amount of government debt held

by the private sector. However, these mechanisms are not straightforward.

Fiscal inflation can successfully reduce nominal debt only if the fiscal policy

brings about wealth effects. Similarly, open market operations can reduce

government debt if the private sector has an incentive to transfer wealth

from bonds to capital. Only then, purchases of government debt in the open

market substantially reduce fiscal inflation. The results are threefold. First,

the government must explicitly proclaim exactly three policy targets [For

example: an inflation target, lump-sum transfers, and a debt-to-GDP ratio].

Remaining long run levels are implied by a condition that the consolidated

budget is balanced in the steady state. Second, once debt deviates from its

sustainable level, under all types of policy interactions the government must

let its debt grow at a faster rate than the growth in tax revenues. This result

is consistent with the fiscal theory of prices. Finally, the usual characteriza-

tion of regime-F no longer obtains.2

2According to the conventional paradigm - "regime M" - debt financed tax cuts do
not affect aggregate demand because the private sector expects the resulting increase in
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Three regimes arise in which monetary policy is passive and fiscal policy ad-

justs income tax rates in response to debt and output. In these regimes, a

sensible fiscal rule both motivates households to transfer wealth from bonds

to productive capital at the private level and, at the same time, impedes

self-fulfilling herd runs from bonds to capital at the social level. Open mar-

ket purchases can then reduce the amount of government debt held by the

households resulting in lower future inflation. Importantly, this mechanism

is effective even when the elasticities of tax revenues are negative or when tax

rates respond very weakly to the state variables. An important feature of this

mechanism is that the interaction between monetary and fiscal policies must

induce a return on capital investment that, after taking into account all the

distortions, is higher than the real rate of interest. Liquidity constraints on

investment that operate as capital adjustment costs enable this discrepancy

to exist without implying an arbitrage.

The rest of the paper is organized as follows: Section 2 describes the

government debt to be matched by future tax increases or spending reductions. Thus,
expansions in government debt do not raise wealth. According to the fiscal theory -
"regime F" — a deficit today is financed by an increment to nominal debt and is not
expected to imply future tax hikes. As a result, households initially perceive the increase
in nominal debt to be an increase in their wealth and try to convert higher wealth into
consumption. Where output is predetermined, rising demand causes rising prices until
real wealth falls back to its pre-deficit level. In this regime an active fiscal policy must
interact with a passive monetary policy. By preventing nominal interest rates from rising
sharply with inflation, monetary policy prevents debt service from growing too rapidly.
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economic environment, the optimal decision-making of the representative

household, and the evolution of government debt. Section 3 contains a de-

tailed general equilibrium analysis. (All proofs are deferred to the appendix.)

Section 4 describes stabilizing monetary-fiscal regimes. Section 5 discusses

the computation of equilibrium, shows how the economy responds to changes

in the proclaimed inflation and tax rate targets under the scenarios of lump-

sum and distortionary taxation [some figures are deferred to appendix B] and

provides impulse responses to a permanent increase in transfers. Section 6

contains the conclusion.

2 The Economic Environment

Time is continuous. The economy is closed and populated by a continuum of

identical infinitely long-lived households, with measure one. The represen-

tative household enjoys consumption, is endowed with perfect foresight and

one unit of time per "period" which it supplies inelastically. Accordingly, the

representative household’s lifetime utility is given by

Ut =

∞∫
t

e−ρsu(cs)ds (1)
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where ρ > 0 denotes the rate of time preference, cs denotes consumption per

capita, u(·) is twice differentiable, strictly increasing, strictly concave, and

satisfies the usual limit conditions. Production takes place in a competitive

sector via a constant returns to scale production technology f(kt) where kt

denotes per capita capital which depreciates at a rate δ. Finally, f(kt) is

concave and twice differentiable. Money enters the economy via a liquidity

constraint on all transactions. Let mt denote the stock of money denomi-

nated in the consumption good, then a formal representation of the liquidity

constraint is:

ct + It ≤ νmt (2)

where It denotes per-capita investment and ν is money velocity.3 Assuming

the existence of government bonds, the representative household’s budget

constraint is

3This version of cash-in-advance is similar to Rebelo and Xie (1999). Let 1
ν denote

the inverse of money velocity, then a requirement that

t+ 1
ν∫

t

[cs + Is] ds ≤ mt formalizes

the liquidity constraint. A Taylor series expansion gives

t+ 1
ν∫

t

[cs + Is] ds =
1
ν [ct + It] +

1
2

(
1
ν

)2
[
·
ct +

·
It] + · · · and 1

ν [ct + It] ≤ mt can be interpreted as a first-order
approximation.
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ct + It +
·
bt +

·
mt = (Rt − πt)bt − πtmt + (1− τ t)f(kt) + Tt (3)

where bt is a real measure of the stock of interest bearing government bonds,

Rt is the nominal rate of interest, πt is the rate of inflation, Tt are real

lump-sum transfers, and τ t ∈ [0, 1] is the income tax rate. Altogether, the

household’s lifetime maximization problem becomes

V [bt,mt, kt] = Max{cs,Is,xs}∞s=t

∞∫
t

e−ρsu(cs)ds (4)

s.t.

·
bs = (Rs − πs)bs − πsms + (1− τ s)f(ks) + Ts − Is − cs − xs

·
ms = xs

·
ks = Is − δks

cs + Is ≤ νms

as, ks ≥ 0

With a borrowing constraint such that limt→∞ate

−

t∫
0

[Rs−πs]ds

≥ 0 where

at ≡ bt +mt denotes the representative household’s non capital wealth.
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2.1 The optimal program

Each household chooses sequences of {ct, It, xt} so as to maximize lifetime

utility, taking as given the initial stock of capital k0, and the time path

{τ t, Tt, Rt, πt}∞t=0 which is exogenous from the view point of a household.

The necessary conditions for an interior maximum are

u′(ct) = λt(1 +
1

ν
Rt) (5a)

µt = u′(ct) (5b)

ζt =
1

ν
Rtλt (5c)

ζt(νmt − ct − It) = 0; ζt ≥ 0 (5d)

Where λt, µt are time-dependent co-state variables interpreted as the mar-

ginal valuation of financial wealth and capital, respectively; ζt is a time-

dependent Lagrange multiplier associated with the liquidity constraint and

equation (5d) is a Kuhn-Tucker condition.

Following Benhabib et. al. (2001b,2002), we restrict attention to a positive

nominal interest rate. As a result, equation (5c) implies that ζt is positive.

It then follows from (5d) that mt = 1
ν

(ct + It). The economic intuition is

10



clear: where the nominal interest rate is positive, holding money entails op-

portunity costs. Thus, minimizing the opportunity cost of holding money

implies that the liquidity constraint is binding. Second, and after substitut-

ing mt = 1
ν

(ct + It) and at = bt + mt into equation (3), the state and

co-state variables must evolve according to

·
λt = λt [ρ+ πt −Rt] (6)

·
µt = −λt(1− τ t)f ′(kt) + (ρ+ δ)µt (7)

·
kt = It − δkt (8)

·
at = (Rt − πt)at + (1− τ t)f(kt) + Tt − (ct + It)

(
1 +

1

ν
Rt

)
(9)

Solving equation (9) yields that the household’s intertemporal budget con-

straint is of the form

limt→∞e
−
t∫
0

[Rs−πs]ds
at = a0+

∞∫
0

e
−
t∫
0

[Rs−πs]ds [
(1− τ t)f(kt) + Tt − (ct + It)

(
1 +

1

ν
Rt

)]
dt ≥ 0

(10)
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and the condition that his intertemporal budget constraint holds with equal-

ity yields the usual transversality condition:

limt→∞ate

−

t∫
0

[Rs−πs]ds

= 0 (11)

Equations (6) —(11) fully describe the optimal program of a representative

household for which the time path {τ t, Tt, Rt, πt}∞t=0 is exogenously given.

2.2 The government and the evolution of government

debt

The government consists of a fiscal authority and a monetary authority. We

assume throughout the paper that the fiscal authority has no access to lump-

sum taxation. The consolidated government prints money,Mt, issues nominal

bonds, Bt, collects taxes to the amount of τ tf(kt) where τ t denotes an income

tax rate, and rebates to the households a lump-sum transfer Tt. Its dollar

denominated budget constraint is therefore given by RtBt + PtTt =
·
Mt +

·
Bt + Ptτ tf(kt) where Pt is the nominal price of a consumption bundle. It

is assumed that the monetary authority imposes a desired interest rate, Rt,
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and that the fiscal authority can continuously control the income tax rate,

τ t.

Dividing both sides of the nominal budget constraint by Pt and rearranging,

yields that government liabilities, denoted by at ≡ bt +mt, evolve according

to:

·
at = (Rt − πt) at −Rtmt + Tt − τ tf(kt) (12)

where πt ≡
·̂
Pt
Pt
and the hatted time derivative is a right derivative, referring to

expected inflation from now on. Equation (12) captures the following story:

The consolidated budget is not necessarily balanced, and secondary deficits

(surpluses) are financed via increments (decrements) to government debt.

As a result, government liabilities increase with the primary deficit, Tt −

τ tf(kt), and with the real interest paid over outstanding debt, (Rt − πt) at,

and decreases with seigniorage, Rtmt.

2.2.1 Monetary Policy

Monetary policy follows a simple version of a Taylor rule that emphasizes

inflation targeting,
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R (πt) = ρ+ π∗ + α(πt − π∗) (13)

where α > 0 is a constant that measures the responsiveness to increases in

inflation around π∗. Following Leeper (1991) and Benhabib et. al. (2001a,

2001b) this rule underlies most of the recent monetary policy literature.

When α > 1monetary policy is considered hawkish, responding to deviations

of the expected inflation from the inflation target by sharply raising the nom-

inal interest rate with the aim of stabilizing inflation around π∗. In Leeper’s

(1991) terminology this is called an "active" monetary policy whereas a weak

response such that α < 1 is called "passive" monetary policy.

2.2.2 Fiscal Policy

Previous work with distorting taxes emphasizes that tax rates adjust to stabi-

lize government debt. Prominent papers in this literature include Bi (2012),

Bi and Traum (2012) and Bi, Leeper and Leith (2012). Given that the state

space is {kt, at}, we assume a set of fiscal rules, τ(kt, at) and Tt of the form:
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τ(kt, at) = τ ∗ + β
f(kt)− f(k∗)

f(k∗)
+ γ

at − a∗
a∗

(14)

∀t : Tt = T (15)

In the terminology of Davig et. al. (2011) equation (15) states that trans-

fers are active. Specifically, we assume that lump-sum transfers are constant

at their steady state level. Equation (14) exhibits the correlation of the in-

come tax rate with the state variables. Terminology is important at this

point. We define procyclical fiscal policy when tax rates are negatively asso-

ciated with output. This component of fiscal policy is captured by β which

also indicates the correlation between the tax rate and the primary deficit.

The correlation between the tax rate and the secondary deficit is captured

by γ. In the terminology of Leeper (1991) fiscal policy is considered ’active

’if it lets government liabilities grow at a rate greater than the real interest

rate. In models where the government has access to lump-sum taxation, an

active fiscal policy is represented by a rule where the government increases

its [lump-sum] tax revenues in response to an increase in its liabilities by less

than the amount ρ(at − a∗). In our model, where lump-sum taxation is not

15



accessible, the threshold for γ under which fiscal policy should be considered

as ’active ’ is addressed in detail in following sections. Timing is also im-

portant. All the debt is inherited from the past and the government is only

setting the terms to repay it. Note that the fiscal policy sets the tax rate

only after real output and the real value of government liabilities had been

realized, whereas monetary policy responds to expected changes in nominal

prices. Accordingly, we consider two stocks - the capital stock, and the real

value of government liabilities - as predetermined variables.

2.2.3 Limitations to the Fiscal Rule

The Laffer Curve The fiscal rule (14) is not without limitations. Let

ϕ(τ t,yt) ≡
∂ ln(τ tyt)
∂ ln(τ t)

= 1 + ∂ ln(yt)
∂ ln(τ t)

denote the marginal revenue generated from

an increase in taxes. The second term is negative as higher taxes decrease

output, so the elasticity of tax revenues with respect to tax rates is less than

one. The peak of the "Laffer curve" is where the elasticity, ϕ(τ t,yt), is zero.

Similarly, the "slippery side" of the Laffer curve is where the elasticity is neg-

ative. Does the model economy exhibit a "Laffer curve" type relation? In this

economy yt = f(kt), accordingly ϕ(τ t,yt) = 1 + τ t
f(kt)

∂f(kt)
∂τ t

= 1 + τ t
f(kt)

f ′(kt)
dkt
dτ t

. We cannot say much about the dynamic Laffer curve. However, we can
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characterize the Laffer curve near the steady state. It is straightforward to

obtain4 that dk∗

dτ∗ = 1
1−τ∗

f ′(k∗)
f ′′(k∗) . Thus, the slope of the Laffer curve in the

steady state is:

ϕ(τ∗) = 1 +
τ ∗

1− τ ∗ ξk (16)

where ξk ≡
[f ′(k∗)]2

f(k∗)f ′′(k∗) .This expression implies that a unique maximum of

the Laffer curve is obtained at 0 < τ = 1
1−ξk

< 1. To get some intuition,

consider a Cobb-Douglas production technology f(k) = kε. For this type of

production function, ξk = ε
ε−1 for all k, and the peak of the Laffer curve is

where τ = 1− ε. Commonly used values of ε for developed economies imply

that τ exceeds 0.5.5

Political intolerance to raising tax rates Most authors believe that

both economic and political factors weigh heavily in the fiscal limit calculus.

Davig et. al. (2010, 2011) and Davig and Leeper (2010) posit that there

is a regime in which higher debt is financed by higher marginal tax rates.

As tax rates increase, political dissatisfaction increases which in turn raises

the probability that the economy will hit its fiscal limit at which point tax

4By applying the implicit function theorem on equation (23) below.
5Reliable estimates are found in Trabandt and Uhlig (2010).
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rates can no longer rise. This can happen much before the elasticity of tax

revenues falls to zero. Although this type of fiscal limit is exogenous to our

model, we can mimic political intolerance to raising tax rates by assuming a

fiscal rule where β = γ = 0.

3 General Equilibrium

In equilibrium, the goods market clears

f(kt) = ct + It (17)

assuming a positive nominal interest rate the money market clears such that

mt =
1

ν
(ct + It) (18)

and government liabilities equal household’s assets.

Using the monetary policy rule, imposing market clearing conditions, and

assuming that the elasticity of intertemporal substitution in consumption is

constant, we arrive at the following characterization of the general equilib-

rium of the economy:
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Proposition 1 In equilibrium, the aggregate dynamics satisfy the following

ODE system:

·
ct
ct

= σ

[
1− τ(kt, at)

1 + 1
ν
R (πt)

f ′(kt)− (ρ+ δ)

]
(19)

·
πt =

ν +R (πt)

α

{
[R (πt)− πt]−

[
1− τ(kt, at)

1 + 1
ν
R (πt)

f ′(kt)− δ
]}
(20)

·
kt = f(kt)− ct − δkt (21)

·
at = [R (πt)− πt] at + Tt −

[
τ(kt, at) +

1

ν
R (πt)

]
f(kt) (22)

Equation (19) is an Euler equation, where σ > 0 denotes the elasticity of

intertemporal substitution in private consumption. In our economy the mar-

ginal product of capital is distorted by the liquidity constraint and by the

income tax. Notice that with no distortions equation (19) is reduced to the

familiar Ramsey type Euler equation. Equation (20) was obtained by tak-

ing a time derivative from the first order condition (5a) and substituting in

equations (6). It corresponds to a Fisher equation in which the nominal rate

of interest varies with expected inflation and the real rate of interest. Note

that the effect of liquidity constraints on investment are similar to those of

adjustment costs. As a consequence, an instantaneous no-arbitrage condition
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between capital assets and financial assets does not hold. However, accord-

ing to equation (20), in equilibrium an intertemporal no-arbitrage prevails.

Finally, equations (21)-(22) were obtained by substituting market clearing

conditions (17)-(18) into equations (8)-(9). At this point, the set of equa-

tions (19)-(22) internalizes the government’s policies and market clearing and

can therefore be viewed as the solution to the central planner’s problem.

Definition A perfect-foresight equilibrium is a set of sequences {ct, πt, kt, at, τ t, Tt, Rt}

and an initial price level P0 > 0 satisfying (17)-(22) given M0+B0 > 0

and k0 > 0.

3.1 Steady-State Equilibrium

It follows from equation (19) that in a steady state

f ′(k∗) = (ρ+ δ)
1 + 1

ν
R∗

1− τ ∗ (23)

where τ ∗ denotes a steady-state income tax rate and R∗ is a steady-state rate

of interest. From equations (20) and (23), R∗ must satisfy

R∗ = ρ+ π∗ (24)
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where π∗ is the steady-state rate of inflation. Equation (21) implies that the

steady-state consumption is

c∗ = f(k∗)− δk∗ (25)

Finally, it follows from equation (22), that in a steady-state equilibrium

government liabilities must satisfy a∗ = 1
ρ

[
f(k∗)(τ ∗ + 1

ν
R∗)− T

]
. Let ã∗ ≡

a∗

f(k∗) , T̃
∗ ≡ T

f(k∗) denote the steady state debt-to-GDP and transfers-to-GDP

ratios, respectively, then we obtain that a sustainable debt level must satisfy

ã∗ =
1

ρ

[
τ ∗ +

1

ν
R∗ − T̃ ∗

]
(26)

Equation (26) specifies that the sustainable debt-to-GDP level equals the

present value of total surplus-to-GDP. [total surplus being tax revenues plus

seigniorage revenues minus transfers] Note that an equilibrium trajectory

{ct, πt, kt, at, τ t, Tt, Rt}∞0 should converge to the steady state {c∗, π∗, k∗, a∗, τ ∗, T ∗, R∗}

whereas the aggregate dynamics in equations (19) - (22) imply that a steady-

state equilibrium determines only 4 variables.6 It is thus straightforward to

show the following:

6Equations (23)-(26) demonstrate that we have four equations and seven variables.
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Proposition 2 A necessary condition for steady state determination is that

the government proclaims three explicit targets.

Proposition 2 follows mainly from the feasibility condition demonstrated by

equation (26). The steady state is sustained only if the revenues from taxes

and seigniorage equal the sum of transfers and debt service. Thus, as equa-

tion (26) links π∗, τ ∗, a∗, T to a balanced budget condition, three targets

should be specified explicitly, and the fourth is implied by the stipulation to

run a balanced budget in the steady state. Proposition 2 has the following

implications:

Corollary 1 Where government proclaims only fiscal targets such as
{
τ ∗, ã∗, T̃ ∗

}
,

the inflation target is implied according to π∗ = ν
(
ρã∗ + T̃ ∗ − τ ∗

)
− ρ

and lump-sum transfers are then set according to T = T̃ ∗f(k∗).

According to Corollary 1 proclaiming
{
τ ∗, ã∗, T̃ ∗

}
implies that transfers

are passive because first a sustainable inflation target is obtained according

to the feasibility condition (26). Given a sustainable inflation target and

a tax rate, output is determined according to equation (23) and only then

fiscal policy can determine the size of lump-sum transfers according to T =
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T̃ ∗f(k∗). Thus, fiscal policy that emphasizes active transfers should proclaim

its targets according to Corollary 2.

Corollary 2 Where government proclaims that the explicit set of targets is{
τ ∗, π∗, T

}
, ã∗ is implied directly by condition (26).

In the rest of the paper we assume that the government explicitly pro-

claims
{
τ ∗, π∗, T

}
.

3.2 Equilibrium Dynamics

3.2.1 Price level determination

Solving equation (22), and letting t → ∞ yields the well known assertion

that market equilibrium requires intertemporal government budget balance:

Lemma 1 In equilibrium

0 = limt→∞ e
−
t∫
0

[R(πs)−πs]ds
at= a0−

∞∫
0

e
−
t∫
0

[R(πs)−πs]ds {
f(kt)

[
τ t + 1

ν
R(πt)

]
− T

}
dt

Lemma 1 follows from: a) solving equation (22) which internalizes the idea

that in equilibrium households’assets equal government’s liabilities; and b)
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imposing conditions (10)-(11) that the households’intertemporal budget con-

straint holds with equality. Note that substituting the fiscal rule (14) into

(22) yields that government liabilities evolve according to:

·
at =

[
R(πt)− πt − γ

f(kt)

a∗

]
at−f(kt)

[
τ ∗ + β

f(kt)− f(k∗)

f(k∗)
− γ +

1

ν
R(πt)

]
+T

(27)

Solving equation (27) for at we obtain that:

Qtat = a0 −
t∫
0

Qs

{
f(ks)

[
τ ∗ + β

f(ks)− f(k∗)

f(k∗)
− γ +

1

ν
R(πs)

]
− T

}
ds

(28)

where Qt ≡ e
−
t∫
0

[R(πs)−πs−γ f(ks)a∗ ]ds
. Letting t → ∞ and rearranging we ob-

tain that:
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lim
t→∞

e
−
t∫
0

[R(πs)−πs]ds
at (29)

= lim
t→∞


a0 −

t∫
0

Qs

{
f(ks)

[
τ ∗ + β f(ks)−f(k

∗)
f(k∗) − γ + 1

ν
R(πs)

]
− T

}
ds

e

t∫
0

γ
f(ks)
a∗ ds


Equation (29) has several implication. First, according to Lemma 1 the left

hand side of equation (29) equals zero in equilibrium. Thus, we must choose

γ in a range so as to ensure that the right hand side of equation (29) equals

zero. Second, we must ensure that the discount factor, Qs, is contracting,

otherwise the integral on the right hand side is not defined. Clearly, these

requirements have substantial effect on the range of admissible fiscal policies.

Proposition 3 specifies this range:

Proposition 3 A monetary market equilibrium exists iff γ < ρã∗ and

equilibrium trajectory is unique. The equilibrium price level is then

determined to satisfy

B0+M0

P0
=

∞∫
0

Qs

{
f(ks)

[
τ ∗ + β f(ks)−f(k

∗)
f(k∗) − γ + 1

ν
R(πs)

]
− T

}
ds
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Proposition 3 shows that in order to pin-point the level of nominal prices

in a market equilibrium, the fiscal authority must let it’s liabilities grow at

a rate greater than the real interest rate. Consequently, the present dis-

counted value of real government liabilities is not expected to vanish. And

so, the price level must play an active role in bringing about fiscal solvency

in equilibrium. This idea has been emphasized by the fiscal theory of prices

and is discussed extensively in Woodford (1995) and Cochrane (2001, 2005).

In this paper, unlike previous literature, the dichotomy between real deter-

minacy and nominal determinacy does not prevail as real determinacy is

a necessary condition for nominal determinacy. Thus, obtaining the initial

price level depends not only on fiscal policy but on monetary policy as well.

This issue receives further attention in the next section.

3.2.2 Transitional Dynamics

In this section we characterize the types of policy interactions that induce

a unique trajectory. According to equations (19)-(22) and the policy rules

(13)-(14), all the variables are a mapping in the (c, π, k, a) space. A linear ap-

proximation to equations (19)-(22) near the steady state is obtained through
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the system

·
xt = A× (xt − x) (30)

where

(31)

xt ≡



ct

πt

kt

at


x ≡



c∗

π∗

k∗

a∗



A ≡



0 −σαc̃∗(ρ+δ)
ν+R∗ f ∗ − σc̃∗

1+ 1
ν
R∗
f ∗2k

(
β + τ∗

1−ϕ∗

)
−γ σ(ρ+δ)

1−τ∗
c̃∗

ã∗

0 ρ+ δ+(ν +R∗)α−1
α

ν
α

f∗2k
f∗

(
β + τ∗

1−ϕ∗

)
γ ν
α

f∗k
f∗

1
ã∗

−1 0 f ∗k − δ 0

0 f ∗
[
(α− 1)ã∗−α

ν

]
−f ∗k

[
1
ν
R∗+β + τ ∗

]
ρ− γ

ã∗


[Asterisk denote steady state levels. f ∗k , f

∗, ã∗, c̃∗ are marginal product of capital,

GDP, debt-to-GDP, and consumption-to-GDP, respectively.].

and kt, at, are predetermined state variables.

When A has no eigenvalue with zero real part, the steady state x is a hy-
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perbolic fixed point and the asymptotic behavior of solutions near it, and

hence its stability type, is determined by the linearization7. Let ri i = 1, .., 4

denote the eigenvalues of A, then by calculating the determinant and trace

of A we obtain that:

(32)

r1r2r3r4 = −
[
c̃∗νσρf ∗2k

] α− 1

α

[
β +

τ ∗

1− ϕ∗ +
γ

ρã∗
(
1

ν
R∗− τ ∗ϕ∗

1− ϕ∗ )
]

(33)

r1 + r2 + r3 + r4 = 2ρ+ (ν +R∗)
α− 1

α
+ (ρ+ δ)

1 + 1
ν
R∗

1− τ ∗ −
γ

ã∗

and Proposition 5 follows directly from equation (32),

Proposition 5 The steady state x is hyperbolic if and only if

α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]
6= 0.

Also note that the dynamic system (30) has two predetermined variables.

As a result, equilibrium is determinate if, and only if, the system has two

stable roots. We can thus obtain a necessary condition for equilibrium de-

7See Guckenheimer and Holmes (1983) Theorem 1.3.1 - The Hartman-Grobman The-
orem, and Theorem 1.3.2 - The Stable Manifold Theorem for a Fixed Point.
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terminacy:

Proposition 6 A necessary condition for determinacy of equilibrium is

α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]
< 0.

That is, a monetary policy such that α > 1 must interact with a fiscal

policy such that β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ ) < 0 , and a monetary

policy such that α < 1 must interact with a fiscal policy such that

β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ ) > 0. Otherwise a market equilibrium with

no sovereign default does not exist.

We next discuss policy regimes from which we can derive suffi cient con-

ditions for equilibrium determinacy.

4 Stabilizing Monetary-Fiscal Interactions

In what follows we focus on a baseline regime for which it is possible to

obtain suffi cient conditions for equilibrium determinacy. We then perturb

the baseline regime so as to approximate the general case. Consider a fiscal

rule where γ = 0. According to this rule, income tax rates respond only to

deviations of output from its long run level. Since we assume that lump-sum

29



transfers are constant, this also implies that the tax rate responds to devia-

tions of the primary deficit from its target. Note that under this fiscal rule

γ = 0 < ρã∗, and according to Proposition 3 it satisfies a necessary condi-

tion for price level determination. However, fiscal solvency also depends on

whether the monetary-fiscal regime induces a unique trajectory. Substituting

γ = 0 into eq. (31) yields that:

A[γ=0] =

 Â1 0

Â2 ρ


and where Â1 is the upper left 3×3 submatrix of A, Â2 is the 1×3 row vector

{A4,1, A4,2, A4,3} and the zero stands for a 3× 1 vector of zeros. Examining

A[γ=0] , the dynamics of (c, π, k) are independent of government liabilities.

This feature has two implications: (a) one eigenvalue of the (c, π, k, a) system

is ρ > 0; (b) the remaining three eigenvalues are determined by Â1 so that the

dynamics of (c, π, k) are completely determined by Â1 . It is straightforward

to show that the three remaining eigenvalues satisfy:

r1r2r3 = −
[
c̃∗νσρf ∗2k

] α− 1

α

[
β +

τ ∗

1− ϕ∗

]
(34)

r1 + r2 + r3 = ρ+ (ν +R∗)
α− 1

α
+ (ρ+ δ)

1 + 1
ν
R∗

1− τ ∗ (35)
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and the main theoretical results of this paper are arrive directly from equa-

tions (34)-(35):

Proposition 7 If fiscal policy targets only the primary deficit, then a suffi -

cient condition for equilibrium determinacy is that the monetary-fiscal

regime acts according to: α < 1

1+ ρ
ν+R∗+

ρ+δ
ν(1−τ∗)

< 1 and β > − τ∗

1−ϕ∗ .

Corrolary 3 Consider a regime that induces equilibrium near a hyperbolic

steady state x where fiscal policy targets the primary deficit. Assume

that its policy stances are α,β and that γ = 0. Then perturbations

to γ in the neighborhood of γ = 0 do not change the phase portrait of

x as long as γ is not perturbed until its bifurcation point. Specifically,

if α < 1

1+ ρ
ν+R∗+

ρ+δ
ν(1−τ∗)

and β > − τ∗

1−ϕ∗ then a complex monetary fiscal

regime will also induce equilibrium as long as it satisfies:

α− 1

α

[
β +

τ ∗

1− ϕ∗ +
γ

ρã∗
(
1

ν
R∗− τ ∗ϕ∗

1− ϕ∗ )
]
< 0 (36)

Interpretation. Assuming endogenous output and no access to lump-sum

taxation adds at least two qualities to the usual story: First, the fiscal au-

thority may hit a fiscal limit when income taxes are close to the peak of
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their Laffer curves. Second, fiscal policy may cause arbitrage effects. House-

holds optimize on their wealth portfolio which consists of productive capital,

nominal bonds, and cash. Bonds yield a real return that equals the nominal

rate of interest minus inflation whereas an increment to the stock of capi-

tal yields a real return that is distorted by an income tax and a liquidity

requirement. At the private level bonds and capital are perfect substitutes.

As a result, any change in the income tax rate or in the nominal rate of

interest induces arbitrage effect as well as wealth effect. This complication

can cause multiplicity of equilibria which, as demonstrated in Proposition

3, is detrimental to the valuation of government debt. Thus, the interac-

tion between fiscal and monetary policies must bring about both real and

nominal determinacy. To play this role, the interaction between monetary

and fiscal policies must comply with the following principles. Firstly, in all

regimes, monetary policy is passive. Specifically, the monetary rule must

exhibit α < 1

1+ ρ
ν+R∗+

ρ+δ
ν(1−τ∗)

. Secondly, in all regimes tax-rate responses to

output must exhibit β + τ∗

1−ϕ∗ > 0. These results arrive from Proposition

7. Finally, applying Corollary 3, we arrive at three variations of tax-rate

responses to deviations of government debt from its sustainable level:

Table 1 - Monetary-Fiscal Regimes and responses to government debt
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Regime Tax revenues elasticity Response to Gov. Debt

FD γ = 0

FC 1
ν
R∗ < τ∗ϕ∗

1−ϕ∗ γ < Min[ρã∗,
β+ τ∗

1−ϕ∗
τ∗ϕ∗
1−ϕ∗−

1
ν
R∗
ρã∗]

FC-Laffer 1
ν
R∗ > τ∗ϕ∗

1−ϕ∗ − β+ τ∗
1−ϕ∗

1
ν
R∗− τ∗ϕ∗

1−ϕ∗
ρã∗ < γ < ρã∗

In the spirit of Proposition 3, a restriction that γ < ρ a∗

f(k∗) obtains in all

regimes which implies that the economy resides in regime-F. As a result, mon-

etary policy stabilizes the economy by preventing debt service from growing

too rapidly. By letting the nominal interest respond to inflation at a magni-

tude that is less than 1

1+ ρ
ν+R∗+

ρ+δ
ν(1−τ∗)

the central bank keeps the real rate of

interest below its long run level throughout the era of debt devaluation.

All three regimes share the principle that fiscal policy must not become a

source of macroeconomic instability. This idea is demonstrated by the restric-

tion that β should not be too negative. Let DMKPt ≡ 1−τ(kt,at)
1+ 1

ν
R(πt)

f ′(kt)− δ

denote the distorted marginal product of capital net of depreciation, then

near the steady state d lnDMKPt
d ln f(kt)

≈ − 1
1−τ∗

[
β + τ∗

1−ϕ∗

]
. This approximation

indicates that the evolution of after tax marginal product of capital along

an equilibrium trajectory is sensitive to fiscal responses to output. Take for

example a rule that exhibits β+ τ∗

1−ϕ∗ < 0. In this case, the after tax marginal

product of capital is positively associated with output. Clearly, responses of
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this type are undesired and the intuition is the following: start from a steady

state equilibrium, and suppose that the future return on capital is expected

to increase.8 Without distorting taxes, indeterminacy cannot occur since a

higher capital stock is associated with a lower rate of return under constant

returns to scale. However, where income taxes decrease when the return on

capital is increasing, the after tax return on capital rises even further thus

validating agents’ expectations and any such trajectory is consistent with

equilibrium. By contrast, a stance such that β + τ∗

1−ϕ∗ > 0 reduces higher

anticipated returns on capital thus preventing flees from bonds to capital and

expectations from becoming self fulfilling.

All three regimes have similar implication as to how should the fiscal au-

thority respond to deviations of debt from its sustainable level. All regimes,

including the case where the fiscal authority responds only to primary deficits

and is silent when government debt diverges from its sustainable level, must

satisfy inequality (36). It is straightforward to show that d lnDMKPt
d ln at

≈ − 1
1−τ∗γ.

Having that, all the regimes in Table 1 imply that y∗d ln yt(
τ∗ϕ∗

1−ϕ∗ −
1
ν
R∗) <

ρa∗d ln at.
9 That is, given a positive shock to government debt all regimes

8Higher anticipated returns on capital in this model arrive from future tax cuts. In
stochastic versions of this model higher anticipated returns can also arrive from belief
driven spurts or from news shock about future productivity.

9We obtain this inequality by starting from inequality (36). With a passive monetary
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must allow government debt to grow at a rate grater than the addition to

tax revenues. Any regime that is not consistent with this upshot is not con-

sistent with equilibrium in regime-F, and this is exactly the idea of the fiscal

theory of prices that corresponds to economies with distorting taxation.

5 Computation

Computing the entire equilibrium trajectory involves a simultaneous deter-

mination of the initial level of nominal prices and the entire state space.

The intuition is straightforward: In a fiscal theoretic equilibrium, any shock

causes a reevaluation of the existing stock of government debt so as to equate

between the present value of the sum of future surpluses and the value of

government debt. However, the entire equilibrium trajectory depends on the

initial value of government debt. The crux of simultaneous determination is

that the initial value of government debt should be obtained as a solution

policy inequality (36) implies (I) β+ τ∗

1−ϕ∗+
γ
ρã∗ (

1
νR

∗− τ∗ϕ∗

1−ϕ∗ ) > 0. Note that (II) β+
τ∗

1−ϕ∗ =

−(1 − τ∗)d lnDMKPt
d ln f(kt)

and that (III) γ = −(1 − τ∗)d lnDMKPt
d ln at

. Finally note that (IV)
Si gn[d ln at] = Si gn[d ln f(kt)] since in our model output decreases in the era of debt
devaluation. Substituting (III) and (II) into (I) we arrive at y∗d ln yt(

τ∗ϕ∗

1−ϕ∗ −
1
νR

∗) <

ρa∗d ln at.
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to a fixed-point problem.10 After obtaining an initial value for non capital

wealth and given an initial stock of productive capital, the model becomes

a continuous-time variant of Blanchard and Kahn (1980). Impulse responses

are then computed according to Sims (2002).

5.1 Calibration

The model is calibrated at an annual frequency because the purpose is to

study the impact of monetary and fiscal policy interactions over a relatively

long horizon. The annual (subjective) rate of time preference is set to ρ =

0.03. Preferences over consumption are logarithmic, σ = 1, the rate of capital

depreciation is set to δ = 0.1, and the elasticity of production technology

is set to ε = 0.5 so as to induce a steady state Laffer curve with a peak at

50 percent tax rate. We set ν = 2.4 so money velocity in the steady state

corresponds to the average U.S. monetary base velocity.

10The formalization and the resolution of this issue are discussed extensively in Gliksberg
(2013). Specifically, the solution is obtained by applying the Krasnoselski-Mann-Bailey
Theorem.
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5.2 Results

5.2.1 Scenarios of lump-sum vis-a-vis distorting taxation

To understand how and why the model performs differently from the con-

ventional models in regime-F, an exercise of policy experiments is performed.

The experiments show how the economy responds to changes in the pro-

claimed inflation and tax rate targets under the scenarios of lump-sum and

distorting taxation. The transition paths appear in detail in Appendix B.

The aftermath of this experiment is the following:

(I) Increments to the tax rate target operate very differently in the two sce-

narios. In the lump-sum economy the sole effect is an instantaneous jump in

the real value of government debt whereas other variables remain constant.

In the distorting-tax economy, increments to the tax rate target send the

economy to a transition towards a new steady state implied by the tax dis-

tortion. In addition, government debt is reevaluated so as to equate between

its real value and the net present value of future surpluses along the new

trajectory. Surprisingly, tax increases induce an increase in the real value of

government debt even where the elasticity of tax revenues is zero or slightly

negative [see figures B.1 and B.3]. For tax rate levels that do not exceed
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the post-war average U.S. Federal tax rate, the evaluation of real debt in the

distorting-tax economy can be higher than the evaluation of real debt in the

lump-sum tax economy. This result emerges when interest responses to infla-

tion are low and when tax responses to the state variables are weak. However

this is a short run phenomenon and in all regimes the long-run real value of

government debt in the distorting-tax economy is lower than its lump-sum

economy counterpart.

(II) Increments to the inflation rate target operate similarly in the two sce-

narios. As both economies have the same type of distortion - a liquidity

constraint - an increase in the inflation target reduces the steady state stock

of capital and sends the economies to transitions that are qualitatively simi-

lar. Increments to the inflation target increase the real value of government

debt in both economies [see figures B.2 and B.4]. The addition to the real

value of government debt arrives from an increase in seigniorage revenues

along the transition path and a decrease in the discount factor of surpluses.

(III) When transfers permanently increase and tax rate targets and inflation

targets are not modified, the only effect is a devaluation of debt. This effect

can be interpreted as a market default. This upshot prevails under both

scenarios of lump-sum and distorting taxation. [see figures B.5 and B.6].
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5.2.2 Responses to a Fiscal Stress

To obtain prescriptions for debt-stabilizing regimes, an exercise of policy

experiments is performed assuming a permanent increase in transfers. Two

experiments are carried out. In the first, the inflation target is set to π∗ =

0.02 and the tax rate target is set to τ ∗ = 0.23. Although 23% is well above

the post-war average U.S. Federal tax rate, it is within the benchmark limit of

24.25% assumed by Davig et. al. (2011). Lump-sum transfers are set so as to

induce a primary surplus that equals 2.5 percent of GDP which implies that

the steady-state debt-output ratio equals 1.527. This experiment is repeated

for a tax rate target that is set to τ ∗ = 0.50 which implies that the elasticity

of tax revenues at the starting point of the experiment is zero.11

A persistent 5% increase in transfers induces a drop in sustainable debt-

output ratios to 1.186 and 0.736 for the 23%-income-tax-rate economy and

the 50%-income-tax-rate economy, respectively. Both exercises show impulse

responses to a persistent 5% increase in transfers for various monetary-fiscal

policy interactions. Figure 1 shows policy prescriptions where the starting

point is a steady state with 23% tax rate.

11In the second experiment inflation target remains π∗ = 0.02 , and transfers correspond
to a sustainable debt-output ratio of 1.527.
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Figure 1.1: Policy parameters 8τ,π<=824.14%,2.%<, α=0.912809, β=−0.6586, γ=−0.00118623. Elasticity of tax revenues near target: 0.681782
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Figure 1.2: Policy parameters 8τ,π<=824.06%,2.%<, α=0.912873, β=0.5, γ=0.029. Elasticity of tax revenues near target: 0.683171
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Figure 1.3: Policy parameters 8τ,π<=823.78%,2.%<, α=0.01, β=−0.6622, γ=−0.00182222. Elasticity of tax revenues near target: 0.688008
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Figure 1: A permanent 5% increase in transfers where 8DebtêGDP,τ,π<=8153%,23%,2%<

Open market operations 



Figure 1 illustrates three policy prescriptions for the 23% tax-rate econ-

omy. All three prescriptions are successful in stabilizing the real value of

government debt and letting it converge to its sustainable level. In Figures

1.1-1.2 monetary responses to inflation are at their highest admissible level

under regime-F. Figure 1.2 exhibits impulse responses where the income tax

rate responds more aggressively. Ceteris paribus, the economy with a more

aggressive tax response exhibits higher levels of inflations. This result is

consistent with the results of Davig et. al. (2011) but the mechanism is

different. Higher distortionary tax reduces capital accumulation and work

effort and depresses output and private consumption. Furthermore, when

tax rate responds aggressively, the net distorted marginal product of capital

[i.e. 1−τ(kt,at)
1+ 1

ν
R(πt)

f ′(kt) − δ] drops below the real rate of interest. In this case,

capital is inferior to government debt, households hold on to their financial

wealth, and a higher level of inflation is required to deplete government debt.

This policy is not entirely disadvantageous as it shortens the process of de-

valuation nearly by half. Thus, where the elasticity of tax revenues is well

above zero and given monetary policy, tax policy affect the extent and du-

ration of fiscal inflation where aggressive tax responses increase inflation but

shorten the process considerably. Figure 1.3 shows that given fiscal policy,
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passive monetary responses can further depress the rate of inflation. Specif-

ically, under interest rate pegs the central bank purchases as much debt as

needed so as to induce the market price of a government bond that implies

the desired interest rate. If at the same time fiscal policy induces a net dis-

torted marginal product of capital that is above the real rate of interest, open

market purchases will successfully drain government debt. In Figure 1.3, the

initial real value of government debt is unchanged relative to its value prior

to the fiscal shock. However, this value drops sharply whereas inflation rates

remain relatively low. This devaluation is caused by open market operations.

Thus, given fiscal policy, monetary policy affects the extent and duration of

fiscal inflation. Furthermore, a sensible monetary policy can reduce the long

run levels of income tax required to restore solvency. In Figure 1.3 the long

run tax rate target is increased by 0.78% whereas in Figure 1.1 - Figure 1.2

long run tax rate must increase by more than one percent.
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Figure 2.1: Policy parameters 8τ,π<=856.7%,2.%<, α=0.869244, β=−0.333, γ=0.00190955. Elasticity of tax revenues near target: −0.309469
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Figure 2.2: Policy parameters 8τ,π<=856.7%,2.%<, α=0.869244, β=0.5, γ=0.00190955. Elasticity of tax revenues near target: −0.309469
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Figure 2.3: Policy parameters 8τ,π<=853.77%,2.%<, α=0.01, β=−0.3623, γ=0.00911088. Elasticity of tax revenues near target: −0.163098
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Figure 2 illustrates three policy prescriptions for the 50% tax-rate econ-

omy. Note that at the starting point of this experiment the economy resides

at the peak of its Laffer curve. In general, there are three means to manip-

ulate the value of government debt. These include changes in tax revenues

which affect the stream of primary surpluses, inflation which reduces the

real value of nominal liabilities, and open market operations that change the

nominal amount of liabilities. Where elasticities of tax revenues are negative,

tax rate responses are ineffective in increasing the flow of primary surpluses.

However, tax rate responses can still interact with monetary policy so as to

operate the two mechanisms at hand. In Figures 2.1-2.2 monetary responses

to inflation are at their highest admissible level under regime-F. Figure 2.2 ex-

hibits impulse responses where tax responds more aggressively. This regime

leads to a default. In particular, we were not able to obtain any stabilizing

policy interaction with aggressive tax responses where elasticities of tax rev-

enues are zero or negative. As long as the fiscal rule induces a net distorted

marginal product of capital that is less than the real rate of interest, open

market operations are ineffective in reducing the amount of debt held by the

private sector, and since tax revenues cannot increase the real value of gov-

ernment debt must drop - hence a default. In Figures 2.1 and 2.3 the real rate
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of interest is on the right side of the distorted marginal product of capital so

fiscal inflation suffi ces to bring about fiscal solvency though at high levels.

Figure 2.3 exhibits the crucial role of monetary policy. An interest rate peg

cuts inflation levels nearly by half. Furthermore, the tax rate target is lower

than its counterpart in Figure 2.1. Thus, a quick drain of debile government

debt is imperative both for a substantial reduction in future inflation as well

as a substantial reduction in future tax rates.

6 Conclusion

We construct a fiscal theoretic framework, with tax distortions, capital ac-

cumulation, and liquidity constraints, to examine policy regimes that sta-

bilize government debt on the impact of a fiscal stress. In this model, the

government has three degrees of freedom in choosing its long run targets.

Other aggregates must adjust so as to balance the consolidated budget in

the steady state. As a result, limitations to fiscal policy - such as a ceiling on

transfers, a minimum tax rate, or a ceiling on debt to output ratio - emerge

endogenously. Any shock to long run levels may render the existing debt

unsustainable. Restoring fiscal solvency requires some degree of fiscal con-
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solidation. However, an active fiscal stance that brings about fiscal inflation

can devalue a substantial portion of government debt. Three monetary-fiscal

regimes achieve this goal in a distorting tax scenario: (a) a regime where

the fiscal authority targets only the primary deficit, (b) a. regime where the

fiscal authority targets both the primary and the secondary deficits and has

the ability to increase its tax revenues, (c) finally, a regime where the fiscal

authority targets both the primary and the secondary deficits but is not able

to increase its tax revenues. In all regimes monetary policy is passive and

fiscal policy is active in the sense that it must allow government debt to grow

at a rate grater than the growth rate of tax revenues. Assuming active trans-

fers, tax hikes are imperative to restore fiscal solvency even if the elasticity of

tax revenues is negative. Debt then devalues through two mechanisms: fiscal

inflation and open market operations. Fiscal inflation can be moderated to a

large extent if the central bank purchases large portions of government debt

in the open market. Specifically we show that the interaction of interest rate

pegs with a very slow adjustment to the income tax rate are most successful

in restoring fiscal solvency with moderate rates of inflation throughout the

era of debt devaluation.
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A. Proofs

Proof of Proposition 3 (I) Assume that γ < ρ a∗

f(k∗) . Then Qt is contract-

ing. Assume now that the discount factor Qt is contracting, then there

is a finite t such that ∀t > t R (πt)− πt− γ f(kt)a∗ > 0. Rt− πt converges

to ρ and f(kt) converges to f(k∗). Thus, in the limit ρ− γ f(k
∗)

a∗ > 0.

(II) Proposition 3 argues that where γ < ρ a∗

f(k∗) the right hand side of

equation (29) equals zero which implies that the transversality condi-

tion limt→∞ e
−
t∫
0

[R(πs)−πs]ds
at is not violated. Where 0 ≤γ < ρ a∗

f(k∗)

this is straightforward. Where γ < 0 , it can be verified using L’Hospital’s

rule.

Proof of Proposition 5 Assume that α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]
6=

0 then the multiple of eigenvalues is non zero which indicates that there

is no zero eigenvalue. Assume now that α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]

=

0 then either α = 1 or β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ ) = 0. In what fol-

lows we show that either policies induce a zero eigenvalue, i.e. that

there is a bifurcation at α = 1 and given β there is a bifurcation

at γ = ρã∗
β+ τ∗

1−ϕ∗
τ∗ϕ∗
1−ϕ∗−

1
ν
R∗
. Note that implementing α = 1 and β + τ∗

1−ϕ∗ +
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γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ ) = 0 simultaneously, brings about a codimension two

bifurcation.

Assume α = 1 and β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ ) 6= 0

Substituting α = 1 into equation (31) we obtain that

A[α=1] ≡



0 −σαc̃∗(ρ+δ)
ν+R∗ f ∗ − σc̃∗

1+ 1
ν
R∗
f ∗2k

(
β + τ∗

1−ϕ∗

)
−γ σ(ρ+δ)

1−τ∗
c̃∗

ã∗

0 ρ+ δ ν
α

f∗2k
f∗

(
β + τ∗

1−ϕ∗

)
γ ν
α

f∗k
f∗

1
ã∗

A3,1 0 A3,3 0

0 A4,2 A4,3 A4,4


where Ai,j i, j = 1, ..4 are components of A specified in eq. (31), respec-

tively. Where α = 1 the central bank holds the real rate of interest constant.

This policy induces a linear dependence between the first row and the second

row of A[α=1]. Specifically, the second row is a multiplication of the first row

by − σαc̃∗

ν+R∗f
∗. Consequently A[α=1] is singular.

Assume α 6= 1 and β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ ) = 0.

Substituting γ̃ ≡ ρã∗
β+ τ∗

1−ϕ∗
τ∗ϕ∗
1−ϕ∗−

1
ν
R∗
into equation (31) we obtain that
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A[γ̃] ≡



0 A1,2 A1,3 ψA1,3

0 A2,2 A2,3 ψA2,3

A3,1 0 A3,3 0

0 A4,2 A4,3 ψA4,3



where ψ ≡ ρ

f∗k [
τ∗ϕ∗
1−ϕ∗−

1
ν
R∗]

is a constant. It is straightforward to notice that

the determinant of A[γ̃] equals zero which implies that A[γ̃] is singular. Thus,

we showed that a monetary-fiscal regime such that α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]

=

0 brings about a non hyperbolic equilibrium and this concludes the proof.

Proof of Proposition 6

Preliminaries According to Proposition 5 if α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]
<

0 then the steady state is hyperbolic. The rest of the proof to propo-

sition 6 is based on the following Theorem and Definition which focus

on hyperbolic fixed points.

Definition [Hirsch and Smale (1976) Chap.16] Let x be a hyper-

bolic equilibrium, that is, the eigenvalues of Df(x) have nonzero

real parts. In this case, the index ind(x) of x is the number of
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eigenvalues (counting multiplicities) of Df(x) having negative real

parts.

The Stable Manifold Theorem

[Guckenhaimer and Holmes (1983) Theorem 1.3.2] Suppose that

·
x = f(x) has hyperbolic fixed point x. Then there exists local stable

and unstable manifolds W s
loc (x) ,W u

loc (x) , of the same dimensions

ns, nu as those of the eigenspaces Es, Eu of the linearized system,

respectively, and tangent to Es, Eu at x. W s
loc (x) ,W u

loc (x) are as

smooth as the function f .

Thus, the index of a hyperbolic fixed point is the dimension of the stable

manifold. Given that we have two predetermined variables we also con-

clude that in the model economy, equilibrium x is determinate if and only if

ind(x) = 2. In what follows we prove Proposition 6.

Proof Note equation (32), the structural parameters ρ, σ are positive. Hence

the sign of the right hand side of equation (32) is determined by the

sign of α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]
.

Table A.1: Index and equilibria in a four dimensional vector space with

two predetermined variables
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Sign(rr1) Sign(rr2) Sign(rr3) Sign(rr4) det(A) Trace(A) Index Equilibrium

+ + + + > 0 > 0 0 no-equilibrium

— + + + < 0 ≷ 0 1 no-equilibrium

— — + + > 0 ≷ 0 2 unique

— — — + < 0 ≷ 0 3 multiple

— — — — > 0 < 0 4 multiple

rri denotes the real part of eigenvalue ri. In our model, equilibrium is de-

terminate only where ind(x) = 2. Where ind(x) = 0, 1 the system has "too

many" unstable roots. That is, there are fewer stable roots than predeter-

mined variables and no convergent solution exists for arbitrary initial value

of the predetermined variable12. Where ind(x) = 3, 4 there are more stable

roots than predetermined variables. In these cases, the transversality con-

dition that the solution be convergent no longer suffi ces to ensure a unique

solution, and thus, with no additional linear boundary conditions equilibrium

is indeterminate.

Note that ind(x) = 2 ⇒ det(A) > 0 ⇒ α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]
<

0.

Thus where α−1
α

[
β + τ∗

1−ϕ∗ + γ
ρã∗ (

1
ν
R∗− τ∗ϕ∗

1−ϕ∗ )
]
> 0 either ind(x) = 1 hence

12This issue is discussed in detail in Blanchard and Kahn (1980) and in Buiter (1984).
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no-equilibrium, or ind(x) = 3 and hence indeterminacy and according to

Proposition 3 a market equilibrium with no default does not exist. QED.

Proof of Proposition 7

Table A.2: Index and equilibria in a three dimensional vector space with

two predetermined variables

Sign(rr1) Sign(rr2) Sign(rr3) det(Â1) tr(Â1) Index Equilibrium

+ + + > 0 > 0 0 no-equilibrium

— + + < 0 ≷ 0 1 no-equilibrium

— — + > 0 ≷ 0 2 unique

— — — < 0 < 0 3 multiple

Equilibrium is determinate only where ind(x) = 2. A[γ=0] is block recursive

with one positive eigenvalue at the lower right 1×1 submatrix, so we obtain

the dimension of the stable manifold only by examining Â1. Observe Table

A.2. det(Â1) > 0 is a necessary condition. Furthermore, we must rule out

the case where ind(x) = 0 by requiring that policy also induce tr(Â1) < 0.

To conclude, we can make sure that ind(x) = 2 by implementing a policy

that brings about r1r2r3 > 0 and r1 + r2 + r3 < 0.

It follows from equation (34) that r1r2r3 > 0 ⇔ α−1
α

[
β + τ∗

1−ϕ∗

]
< 0. So
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det(Â1) > 0 under two regimes: {α > 1 and β + τ∗

1−ϕ∗ < 0} or {α < 1

and β + τ∗

1−ϕ∗ > 0}. Under the first regime, we obtain from equation (35)

that tr(Â1) > 0 and we cannot rule out the possibility of No-equilibrium.

However, in the second regime where α < 1 we can ensure that tr(Â1) < 0

by requiring that α < 1

1+ ρ
ν+R∗+

ρ+δ
ν(1−τ∗)

< 1. QED.

Proof of Corollary 3

Preliminaries The main idea of this corollary is that perturbations are

in the parameter space {γ}. Thus, starting from a determinate equi-

librium, as long as γ does not reach its bifurcation point, the phase

portrait of the (unchanged) steady state should not be affected by the

perturbation. The formal proof of Corollary 3 follows directly from the

following Theorems. Specifically, in the terminology of the Theorem

1 and 2 we choose y = x and g(y) that differs from f(x) up to the

perturbation of γ.

Theorem 1 [Hirsch and Smale (1976) Chap.16] Let f : W → E be

a C1 vector field and x ∈ W an equilibrium of
·
x = f(x) such that

Df(x) ∈ L(E) is invertible. Then there exists a neighborhood U ⊂ W

of x and a neighborhood < ⊂ f(W ) of f such that for any g ∈ <
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there is a unique equilibrium y ∈ U of
·
y = g(y). Moreover, if E is

normed, for any ε > 0 we can choose < so that |y − x| < ε.

Theorem 2 [Hirsch and Smale (1976) Chap.16] Suppose that x is a hy-

perbolic equilibrium. In Theorem 1, then, < and U can be chosen so

that if g ∈ <, the unique equilibrium y ∈ U of
·
y = g(y) is hyperbolic

and has the same index as x.

Proof Consider a complex fiscal policy where γ 6= 0. Consider the system

·
xt = g[γ](xt) where γ = 0± ε, ε > 0, then a linearization reads

·
xt =

[
A[γ=0] + ε∆

]
× (xt − x)

where

∆ ≡



0 0 0 −σ(ρ+δ)
1−τ∗

c̃∗

ã∗

0 0 0 ν
α

f∗k
f∗

1
ã∗

0 0 0 0

0 0 0 − 1
ã∗


Since A[γ=0] is invertible, by implicit function theorem,

·
xt = g[γ](xt) con-

tinues to have a unique solution x = x+O(ε) near x for suffi ciently small ε.

Moreover, since we restrict the admissible monetary-fiscal regimes to a set
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that satisfies proposition 6, we ensure that A[γ=0] + ε∆ is invertible which

implies that x = x is the unique solution to
·
xt =

[
A[γ=0] + ε∆

]
× (xt − x).

Furthermore, since the linearized system has eigenvalues that depend con-

tinuously on ε, no eigenvalues can cross the imaginary axis if ε remains

small with respect to the magnitude of the real parts of the eigenvalues of

A[γ=0]. Thus, the perturbed system has a unique fixed point with eigenspaces

and invariant manifolds of the same dimensions as those of the unperturbed

system and which are ε−close locally in position and slope to the unper-

turbed manifolds. To conclude, since the roots of A[γ=0] and the roots of[
A[γ=0] + ε∆

]
ε=0

are identical, letting ε grow in any direction preserves the

topological equivalence between the perturbed and the unperturbed systems

as long as det
[
A[γ=0] + ε∆

]
does not change signs.
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B. Solving the model under the scenarios of lump-sum and dis-

torting taxation

Table B.1 Model Calibrations

Parameter Calibration

Subjective discount factor ρ 0.03

Rate of capital depreciation δ 0.1

Elasticity of intertemporal substitution σ 1

Output elasticity ε 0.5

Inflation rate target (annual) π∗ 0.02

Tax rate target τ ∗1 0.23

Tax rate target τ ∗2 0.50

Lump-sum taxes, in the lump-sum economy, are set to as to equate between

tax revenues in the two economies in the steady state.

The x-axis indicates time measured in years.

Solid lines indicate throughout the distorting-tax economy whereas dashed

lines indicate the lump-sum tax economy.

Figure B.1 The starting point is a steady state where tax rate is 23% and

inflation is 2%. This panel shows transition paths to a steady state with

24% tax rate and 2% inflation. In figures B.1.1.-B.1.3 the monetary policy
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response parameter, α, is at the upper limit of a passive stance. Responses

to output are negative, positive and mute, respectively . Given the response

to output, tax rates and elasticity of tax revenues, the response to govern-

ment debt is in the permissible bounds according to Corollary 3. In figures

B.1.4.-B.1.6 monetary policy pegs the nominal interest rate. Figure B.1.4

shows that an increase in the tax rate from 23% to 24% induces the largest

reevaluation of government debt if it interacts with an interest rate peg and a

negative response to output. In this case the initial addition to the real value

of government debt in the economy with distorting taxes is higher than the

addition to the real value of government debt in the lump-sum tax economy.

Figure B.2 The starting point is a steady state where tax rate is 23% and

inflation is 2%. This panel shows transition paths to a steady state with

23% tax rate and 3% inflation. In figures B.2.1.-B.2.3 the monetary policy

response parameter, α, is at the upper limit of a passive stance. Responses to

output are negative, positive and mute, respectively . Given the response to

output, tax rates and elasticity of tax revenues, the response to government

debt is in the permissible bounds according to Corollary 3. In figures B.2.4.-

B.2.6 monetary policy pegs the nominal interest rate. In both economies

investment is subject to a liquidity constraint. As a result, changes in infla-
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tion target send the two economies to similar transition paths since in both

economies the policy shock is transmitted to changes in the stock of capital

via the nominal rate of interest.

Figure B.3 The starting point is a steady state where tax rate is 50% and

inflation is 2%. This panel shows transition paths to a steady state with 51%

tax rate and 2% inflation. Real debt reevaluation in the distorting-tax econ-

omy is less then the reevaluation in the lump-sum tax economy. Although

tax revenues elasticity is negative, an increment in the tax rate target ini-

tially increases the real value of government debt.

Figure B.4 This panel shows transition paths from a steady state with 50%

tax rate and 2% inflation to a steady state with 50% tax rate and 3% infla-

tion. As is figure B.2 dynamics are similar for the two economies.

Figures B.5-B.6 These figures show the dynamics in the two economies

when transfers permanently increase and policy targets remain at their lev-

els prior to the shock. In both economies the only effect is a devaluation

of debt. This result can be interpreted either as an outright default or as a

jump in nominal prices that induces a market default.

62



 
 
 
 
 
 
 
 
 

    

 

 

B.1.
1:

P
olic

y
p
aram

eter
s

α
=
0.91

2921
,

β
=
−0.6

6,
γ
=0.0

0064
4935

.

0
5

10
15

20
25

30
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.012
-

0.010
-

0.008
-

0.006
-

0.004
-

0.002
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.006
-

0.004
-

0.002
0.000
0.002
0.004
0.006

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30

0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.1

.2
:

Po
lic

y
pa

ra
me

ter
s

α
=
0.

91
292

1,
β
=0

.5
,

γ
=0

.0
29

.

0
5

10
15

20
25

30
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30

-
0.012

-
0.010

-
0.008

-
0.006

-
0.004

-
0.002
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.020
-

0.015
-

0.010
-

0.005
0.000

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30

0.0
0.2
0.4
0.6 Log

of
N

om
inalPrices

B.
1.

3:
Po

lic
y

par
am

ete
rs

α
=
0.

912
92

1,
β
=
0,

γ
=
0.

0
5

10
15

20
25

30
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.012
-

0.010
-

0.008
-

0.006
-

0.004
-

0.002
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.008
-

0.006
-

0.004
-

0.002
0.000

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30

0.0
0.2
0.4
0.6 Log

of
N

om
inalPrices

B.
1.

4:
Po

lic
y

par
am

ete
rs

α
=
0.

01,
β
=
−0

.6
6,

γ
=
0.0

00
644

93
5.

0
5

10
15

20
25

30
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.006
-

0.005
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
O

utput

0
5

10
15

20
25

30

-
0.005
0.000
0.005
0.010

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
-

0.2
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.
1.
5
:
P
o
li
c
y
p
a
ra
m
et
e
r
s

α
=0
.
0
1,

β
=
0
.
5,

γ
=
0
.
02
9
.

0
5

10
15

20
25

30
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.012
-

0.010
-

0.008
-

0.006
-

0.004
-

0.002
0.000

Log
O

utput

0
5

10
15

20
25

30

-
0.005
0.000
0.005
0.010

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
-

0.2
0.0
0.2
0.4
0.6 Log

of
N

om
inalPrices

B
.
1
.
6:

P
o
l
i
c
y

p
ar
a
m
e
t
e
r
s

α
=0
.
0
1
,

β
=
0
,

γ
=
0
.

0
5

10
15

20
25

30
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
-

0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.012
-

0.010
-

0.008
-

0.006
-

0.004
-

0.002
0.000

Log
O

utput

0
5

10
15

20
25

30

-
0.005
0.000
0.005
0.010

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20
0.25

Log
R

ealG
ov.Liabilities

0
5

10
15

20
25

30
-

0.2
0.0
0.2
0.4
0.6 Log

of
N

om
inalPrices

E
conom

y
w

ith
Incom

e
T

ax
Econom

y
w

ith
L

um
p
-

sum
T

ax

F
ig
ur
e
B
.1
:
P
ol
ic
y
s
ho
ck
.
T
ra
ns
it
i
on

f
r
om

8
τ,

π
<
=
80
.2
3
,0
.0
2
<

to
8
τ,

π
<
=
80
.
24
,0
.0
2
<.

E
la
s
ti
ci
ty

of
t
a
x
re
ve
n
ue
s
ne
a
r
ta
r
ge
t:

0
.
68
42
11



 

 
 
 

  

  

 

 

B
.
2
.
1
:

P
o
l
ic
y

p
a
r
a
m
e
t
e
r
s

α
=
0
.
9
1
37
5
2
,

β
=
−
0
.
6
7
,

γ
=
−
0
.
0
00
4
5
3
7
3
5
.

0
5

10
15

20
25

30
0.220
0.225
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.002
-

0.001
0.000
0.001
0.002

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B.2
.2:

Poli
cy

p
aram

eter
s

α
=
0.91

3752
,

β
=
0.5,

γ
=0

.029
.

0
5

10
15

20
25

30
0.220
0.225
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10152025
30

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15202530

0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

1015
20

2530
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
O

utput

0
5

101520
25

30
-

0.006
-

0.005
-

0.004
-

0.003
-

0.002
-

0.001
0.000 Log

C
onsum

ption

0
5

1015202530
0.00
0.02
0.04
0.06
0.08
0.10
Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.2.3:

Po
licy

par
ameters

α
=0.913

752,
β
=0

,
γ
=0.

0
5

10
152025

30
0.220
0.225
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

1015
20

2530
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15

202530
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15202530

-
0.004

-
0.003

-
0.002

-
0.001
0.000

Log
O

utput

0
5

10
15

20
25

30

-
0.002

-
0.001
0.000
0.001 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08

Log
R

ealG
ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.
2
.
4
:
P
o
l
i
c
y
p
a
r
a
m
e
t
e
r
s

α
=
0
.
0
1
,

β
=
−
0
.
6
7
,

γ
=
−
0
.
0
0
0
4
5
3
7
3
5
.

0
5

10
15

20
25

30
0.220
0.225
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025

R
ealInterest

0
5

10
15

20
25

30
-

0.0035
-

0.0030
-

0.0025
-

0.0020
-

0.0015
-

0.0010
-

0.0005
0.0000

Log
O

utput

0
5

10
15

20
25

30

-
0.0020

-
0.0015

-
0.0010

-
0.0005
0.0000 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08

Log
R

ealG
ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.
2
.
5
:
P
o
l
i
c
y
p
a
r
a
m
e
t
e
r
s

α
=
0
.
0
1
,

β
=
0
.
5
,

γ
=
0
.
0
2
9
.

0
5

10
15

20
25

30
0.220
0.225
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15

2025
30

0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.0035
-

0.0030
-

0.0025
-

0.0020
-

0.0015
-

0.0010
-

0.0005
0.0000 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08

Log
R

ealG
ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.2

.6
:

Po
li

cy
p
ar

am
ete

rs
α
=0

.0
1,

β
=0

,
γ
=
0.

0
5

1015202530
0.220
0.225
0.230
0.235
0.240
0.245
0.250

Tax
R

ate

0
5

1015202530
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

1015202530
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

1015202530
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

1015202530
-

0.0035
-

0.0030
-

0.0025
-

0.0020
-

0.0015
-

0.0010
-

0.0005
0.0000

Log
O

utput

0
5

1015202530

-
0.0020

-
0.0015

-
0.0010

-
0.0005
0.0000 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06

Log
R

ealG
ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

Econom
y

w
ith

Incom
e

T
ax

Econom
y

w
ith

L
um

p
-

sum
T

ax

Fi
gu

re
B.

2:
Po

li
cy

sh
ock

.
Tra

ns
it

ion
f
rom

8
τ
,
π
<
=
80.

23
,0.

02
<
t
o

8
τ,

π
<
=
80

.2
3,

0.0
3
<
.
E
la

sti
ci

ty
of

t
ax

re
ven

ue
s
n
ea

r
t
ar

ge
t:

0.
701

29
9



   

  

 

B
.
3
.
1
:

P
o
l
i
c
y

p
a
r
a
m
e
t
e
r
s

α
=
0
.
8
8
0
6
3
9
,

β
=
−
0
.
3
9
,

γ
=
0
.
0
2
9
.

0
5

101520
2530

0.500
0.505
0.510
0.515
0.520

Tax
R

ate

0
5

10152025
30

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

101520
2530

0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

1015
202530

0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10152025
30

-
0.015

-
0.010

-
0.005
0.000

Log
O

utput

0
5

10
15202530

-
0.014

-
0.012

-
0.010

-
0.008

-
0.006

-
0.004

-
0.002
0.000 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20
Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
-

0.2
0.0
0.2
0.4
0.6
0.8
Log

of
N

om
inalPrices

B
.
3
.
2
:

P
o
l
i
c
y
p
a
r
a
m
e
t
e
r
s

α
=
0
.
8
8
0
6
3
9
,

β
=
0
.
5
,

γ
=
0
.
0
2
9
.

0
5

10
15

20
25

30
0.500
0.505
0.510
0.515
0.520
0.525

Tax
R

ate

0
5

1015
20

25
30

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.020
-

0.015
-

0.010
-

0.005
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.035
-

0.030
-

0.025
-

0.020
-

0.015
-

0.010
-

0.005
0.000 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20
Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
-

0.2
0.0
0.2
0.4
0.6
0.8
Log

of
N

om
inalPrices

B.
3.3:

Po
licy

par
amet

ers
α
=0.

880
639,

β
=0

,
γ
=
0.

0
5

1015202530
0.500
0.505
0.510
0.515
0.520

Tax
R

ate

0
5

1015202530
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

1015202530
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

1015202530
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

1015202530
-

0.020
-

0.015
-

0.010
-

0.005
0.000

Log
O

utput

0
5

1015202530

-
0.03

-
0.02

-
0.01
0.00 Log

C
onsum

ption

0
5

1015202530
0.00
0.05
0.10
0.15
0.20
Log

R
ealG

ov.Liabilities

0
5

1015202530
-

0.2
0.0
0.2
0.4
0.6
0.8
Log

of
N

om
inalPrices

B
.
3.
4
:
P
o
l
ic
y

pa
r
a
me
t
e
rs

α
=0
.
0
1,

β
=
−
0
.
39
,

γ
=
0
.
02
9
.

0
5

10
15

20
25

30
0.500
0.505
0.510
0.515
0.520

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.014
-

0.012
-

0.010
-

0.008
-

0.006
-

0.004
-

0.002
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.015
-

0.010
-

0.005
0.000
0.005
0.010
0.015
0.020

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
-

0.2
0.0
0.2
0.4
0.6
0.8
1.0 Log

of
N

om
inalPrices

B
.3
.5
:
Po
li
c
y
pa
ra
me
te
rs

α
=
0.
01
,

β
=
0.
5
,

γ
=
0.
02
9.

0
5

10
15

20
25

30
0.500
0.505
0.510
0.515
0.520
0.525

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.020
-

0.015
-

0.010
-

0.005
0.000

Log
O

utput

0
5

10
15

20
25

30

-
0.03

-
0.02

-
0.01

0.00
Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30

0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B.
3.6

:
Pol

icy
p
ara

me
ter

s
α
=0

.01
,

β
=0

,
γ
=0

.

0
5

10
15

20
25

30
0.500
0.505
0.510
0.515
0.520
0.525

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
-

0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30

-
0.015

-
0.010

-
0.005

0.000
Log

O
utput

0
5

10
15

20
25

30

-
0.01

0.00

0.01

0.02
Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.05
0.10
0.15
0.20 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
-

0.2
0.0
0.2
0.4
0.6
0.8

Log
of

N
om

inalPrices

Econom
y

w
ith

Incom
e

T
ax

Econom
y

w
ith

Lum
p
-

sum
T

ax

F
i
gu
r
e

B
.3
:

P
ol
i
c
y
s
h
o
c
k.

T
r
an
s
i
t
i
on

f
r
om

8
τ
,
π
<
=
8
0.
5
,
0
.0
2
<

t
o

8
τ
,
π
<
=
8
0
.5
1
,
0
.0
2
<
.

El
a
s
t
ic
i
t
y
o
f

t
ax

r
e
v
en
u
e
s
n
e
a
r
t
a
r
g
et
:

−
0.
0
4
0
8
16
3



 

 

  

B.
4.

1:
P
ol

ic
y

pa
ra

me
te

rs
α
=0

.8
824

36
,

β
=
−0

.4
,

γ
=
0.

02
9.

0
5

10
15

20
25

30
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.003
-

0.002
-

0.001
0.000
0.001
0.002
0.003

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06 Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B.
4.

2:
Po

li
cy

pa
ra

me
te

rs
α
=
0.

882
43

6,
β
=
0.

5,
γ
=0.

02
9.

0
5

10
15

20
25

30
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10

N
om

inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.007
-

0.006
-

0.005
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08

Log
R

ealG
ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.4.

3:
Po

li
cy

pa
ra

met
er

s
α
=0

.88
24

36,
β
=0,

γ
=0.

0
5

10
15

20
25

30
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
O

utput

0
5

10
15

20
25

30

-
0.006

-
0.004

-
0.002
0.000
0.002 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.
4
.4
:

Po
l
i
cy

p
ar
a
m
et
e
r
s

α
=
0
.0
1
,

β
=
−
0.
4
,

γ
=
0
.0
2
9
.

0
5

10
15

20
25

30
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025

R
ealInterest

0
5

10
15

20
25

30
-

0.0035
-

0.0030
-

0.0025
-

0.0020
-

0.0015
-

0.0010
-

0.0005
0.0000

Log
O

utput

0
5

10
15

20
25

30
-

0.005
-

0.004
-

0.003
-

0.002
-

0.001
0.000

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8
1.0
Log

of
N

om
inalPrices

B
.
4
.5
:
P
o
li
c
y
p
a
ra
m
et
e
r
s

α
=0
.
01
,

β
=
0
.5
,

γ
=
0.
0
2
9.

0
5

10
15

20
25

30
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
15

20
25

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

2025
30

-
0.004

-
0.003

-
0.002

-
0.001
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.005
-

0.004
-

0.003
-

0.002
-

0.001
0.000 Log

C
onsum

ption

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06

Log
R

ealG
ov.Liabilities

0
5

1015
20

2530
0.0
0.2
0.4
0.6
0.8
1.0
Log

of
N

om
inalPrices

B.
4
.6
:

Po
l
ic
y

pa
r
am
e
t
er
s

α
=
0
.0
1
,

β
=
0,

γ
=0
.

0
5

10
15

20
25

30
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

10
1520

25
30

0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30

-
0.003

-
0.002

-
0.001
0.000

Log
O

utput

0
5

10
15

20
25

30
-

0.003
-

0.002
-

0.001
0.000

Log
C

onsum
ption

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Log

R
ealG

ov.Liabilities

0
5

1015
2025

30
0.0
0.2
0.4
0.6
0.8
1.0
Log

of
N

om
inalPrices

Econom
y

w
ith

Incom
e

T
ax

Econom
y

w
ith

Lum
p
-

sum
T

ax

F
ig
u
re

B.
4
:
P
ol
i
cy

sh
o
ck
.
T
r
an
s
it
i
on

fr
o
m

8
τ,

π
<
=
8
0.
5
,0
.
02

<
t
o

8
τ
,
π
<
=
8
0
.5
,0
.
03

<
.
E
la
s
ti
c
it
y
o
f
t
a
x
r
ev
e
nu
e
s
n
ea
r
t
a
rg
e
t:

0.



 

 

 

 

  

  

 

B.5.
1:

P
olic

y
par

amet
ers

8
τ,

π
<
=
823

.
%,2

.
%
<,

α
=0

.9137
1,

β
=
−0.

67,
γ
=
−0.

0031
4607

.
El

astic
ity

of
t
ax

r
evenu

es
n
ear

targe
t:

0
.701

299

0
5

10
15

20
25

30
0.220
0.225
0.230
0.235
0.240

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

1015
2025

30
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.02
-

0.01
0.00
0.01
0.02

Log
O

utput

0
5

10
15

20
25

30
-

0.02
-

0.01
0.00
0.01
0.02 Log

C
onsum

ption

0
5

10
15

20
25

30
-

0.30
-

0.25
-

0.20
-

0.15
-

0.10
-

0.05
0.00
Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

B
.
5
.
2
:
P
o
l
i
cy

p
a
r
am
e
t
e
r
s

8
τ
,
π
<
=
8
2
3
.
%
,2
.
%
<
,

α
=
0
.
0
1,

β
=
−
0.
6
7
,

γ
=
−
0
.
0
03
1
4
6
0
7.

E
l
a
st
i
c
i
t
y
o
f

t
ax

r
e
v
en
u
e
s

ne
a
r

t
ar
g
e
t
:
0
.
7
0
1
29
9

0
5

10
15

20
25

30
0.220
0.225
0.230
0.235
0.240

Tax
R

ate

0
5

10
15

20
25

30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

10
15

20
25

30
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

1015
20

25
30

0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

10
15

20
25

30
-

0.02
-

0.01
0.00
0.01
0.02

Log
O

utput

0
5

10
15

20
25

30
-

0.02
-

0.01
0.00
0.01
0.02 Log

C
onsum

ption

0
5

10
15

20
25

30
-

0.30
-

0.25
-

0.20
-

0.15
-

0.10
-

0.05
0.00
Log

R
ealG

ov.Liabilities

0
5

10
15

20
25

30
0.0
0.2
0.4
0.6
0.8 Log

of
N

om
inalPrices

Econom
y

w
ith

Incom
e

T
ax

Econom
y

w
ith

Lum
p
-

sum
T

ax

Fi
g
ur
e
B
.
5:

A
p
er
m
an
e
nt

5
%

in
c
re
a
se

in
tr
a
ns
f
er
s
w
h
er
e

8
D
eb
t
êG
D
P,

τ
,
π
<
=
8
1
53

%
,2
3
%,
2
%
<

B.6.1
:
Poli

cy
par

ameters
8
τ,

π
<
=
850.

%
,2.

%
<,

α
=0.8

82396,
β
=
−0.4

,
γ
=0.

012083
3.

Elas
ticity

of
ta

x
reve

nues
n
ear

tar
get:

0
.

0
5

1015202530
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

1015202530
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Inflation
R

ate

0
5

1015202530
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

1015202530
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

1015202530
-

0.02
-

0.01
0.00
0.01
0.02

Log
O

utput

0
5

1015202530
-

0.02
-

0.01
0.00
0.01
0.02 Log

C
onsum

ption

0
5

1015202530
-

0.6
-

0.5
-

0.4
-

0.3
-

0.2
-

0.1
0.0

Log
R

ealG
ov.Liabilities

0
5

1015
202530

0.0
0.5
1.0
1.5
Log

of
N

om
inalPrices

B
.
6
.
2
:

P
o
l
i
c
y

p
a
r
a
m
e
t
e
r
s

8
τ
,
π
<
=
8
5
0
.
%
,
2
.
%
<
,

α
=
0
.
0
1
,

β
=
−
0
.
4
,

γ
=
0
.
0
1
2
0
8
3
3
.

E
l
a
s
t
i
c
i
t
y

o
f

t
a
x

r
e
v
e
n
u
e
s

n
e
a
r

t
a
r
g
e
t
:

0
.

0
5

1015202530
0.490
0.495
0.500
0.505
0.510

Tax
R

ate

0
5

1015202530
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07 Inflation

R
ate

0
5

1015202530
0.00
0.02
0.04
0.06
0.08
0.10 N

om
inalInterest

0
5

1015202530
0.000
0.005
0.010
0.015
0.020
0.025
0.030

R
ealInterest

0
5

1015202530
-

0.02
-

0.01
0.00
0.01
0.02

Log
O

utput

0
5

1015202530
-

0.02
-

0.01
0.00
0.01
0.02 Log

C
onsum

ption

0
5

1015202530
-

0.6
-

0.5
-

0.4
-

0.3
-

0.2
-

0.1
0.0

Log
R

ealG
ov.Liabilities

0
5

1015202530
0.0
0.5
1.0
1.5
Log

of
N

om
inalPrices

Econom
y

w
ith

Incom
e

T
ax

Econom
y

w
ith

Lum
p
-

sum
T

ax

Fi
g
ur
e
B
.
6:

A
p
er
m
an
e
nt

5
%

in
c
re
a
se

in
tr
a
ns
f
er
s
w
h
er
e

8
D
eb
t
êG
D
P,

τ
,
π
<
=
8
1
53

%
,5
0
%,
2
%
<




