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Abstract

Bargaining theory has a conceptual dichotomy at its core: according

to one view, the utilities in the bargaining problem are meaningless

numbers (v-N.M utilities), while according to another view they do have

concrete meaning (willingness to pay). The former position is assumed

by the Nash and Kalai-Smorodinsky solutions, and the latter is assumed

by the egalitarian, utilitarian, and equal-loss solutions. In this paper I

describe a certain form of equivalence between the set consisting of the

former solutions and the set consisting of the latter. This equivalence is

the result of an attempt to bridge the gap between the aforementioned

views; utilizing this equivalence, I derive a new axiomatization of the

Nash solution.
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1 Introduction

The Nash bargaining problem (due to Nash (1950)) is defined as a pair (S, d).

The set S, the feasible set, consists of all the utility vectors that the players can

achieve via unanimous agreement, and d ∈ S, the disagreement point, specifies

their utilities in case that no such agreement is reached—player i receives the

utility payoff di in this event.

Regarding the points of S, the current literature offers two interpretations.

According to one, utilities are v-N.M utilities: they are determined only up

to positive affine transformations, and, in particular, there is no meaning to

compare player i’s utility payoff to that of player j’s. This approach goes

back to Nash’s (1950) original work. The alternative approach assumes that

utilities are comparable. This interpretation is especially appealing for situa-

tions in which bargaining is over the division of some resource—a “pie”—and

a player’s overall utility is v(x) + t, where x is his share of the pie and t is his

wealth. Here, utilities stand for willingness to pay (for the pie), measured on

a fixed, common scale. Kalai’s (1977) work on the egalitarian solution is the

literature’s prominent representative of this approach. I will call the latter ap-

proach the interpersonal approach (IPA) and call the former the interpersonal

free approach (IPFA).

Concepts related to fairness and efficiency are typically meaningful only

under IPA. Think of the utilitarian criterion of maximizing the sum of the

players’ utilities and the egalitarian criterion of equating these utilities. What

sense does it make to add “apples to oranges”? Likewise, what reason is there

to equate meaningless numbers? It therefore seems that adopting IPFA, as

is widely done in the literature,1 makes it impossible, from the very onset,

1See Thomson (1994) for a comprehensive survey of the literature.
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to consider basic ideas of fairness and efficiency, at least in their traditional

formulation.

The point of this paper is to argue the opposite. I offer a middleground

which combines IPA and IPFA. In this middleground, there is room for both

scale-invariance, which, in IPFA, comes from the v-N.M assumption, and, at

the same time, there is room for operations such as summing up and equating

payoffs. Taking this approach, I derive a new characterization of the 2-person

Nash bargaining solution.

My idea is this. In the existing literature, under either IPA or IPFA, the

bargaining model assumes a fixed set of players. Instead, I offer the following

alternative view: imagine that each problem B = (S, d) corresponds to a pos-

sibly different set of players, (1B, 2B, · · · , nB) ≡ I(B). When each problem

corresponds to potentially different players, scale-invariance does not stand for

the v.N-M assumption anymore—it is a requirement that regards comparisons

of different sets of players. Under this interpretation of the model, interper-

sonal utility comparisons make sense. After all, if the problem B is unique to

the players in I(B), we may very well assume that, to begin with, it is given

in the scales that capture the right interpersonal comparisons among them.

It is therefore meaningful to consider the following solutions to B = (S, d).

The utilitarian solution, U(S, d), the egalitarian solution, E(S, d), and the

equal-loss solution, EL(S, d). The first is defined to be any selection from

U(S, d) ≡ argmaxSd

∑
xi, where Sd ≡ {x ∈ S|x ≥ d},2 the second is given

by d + ε · 1,3 where ε is the maximal number such that the aforementioned

expression is in S, and the third picks the highest point y ∈ S such that

2Vector inequalities: xRy if and only if xiRyi for all i, for both R ∈ {≥, >}.
31 = (1, · · · , 1); similarly, 0 = (0, · · · , 0).
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ai − yi = aj − yj for all i and j, where ai = ai(S, d) ≡ max{xi|x ∈ Sd}.4

The solution U represents the classical idea of utilitarianism, which dates

back to Jeremy Bentham. In an environment with a common transferable

utility unit (money), as in the “split the pie” problem above, maximization

of the sum of utilities is equivalent to Pareto efficiency. The other solutions,

E and EL, represent two alternative notions of fairness: equality of gain and

equality of sacrifice. All of these solutions are sensible under IPA. However,

since they typically yield different recommendations, they present bargaining

theory with substantial difficulties: first, in solving bargaining situations, one

needs to compromise on either fairness or efficiency; second, to begin with, it

is not obvious what is the meaning of a “fair outcome,” since there are (at

least) two reasonable notions of fairness.

Underlying these difficulties is a more general problem. Suppose that the

players consider {s1, · · · , sK} as legitimate candidate-solutions. If each solu-

tion has its merits, in terms of the axiomatizations it enjoys, the philosophical

ideas it expresses, or otherwise, it is not clear which one they should chose.

A conservative first step would be to demand that payoffs never fall below

the minimum of the recommendations of these solutions; namely, that in each

problem (S, d) each player i would receive at least min{s1i (S, d), · · · , sKi (S, d)}.

This is a notion of insurance that guarantees that payoffs will never fall short

of a certain bound—a bound which is itself a function of the appealing, but

jointly-inconsistent, solutions (sk)Kk=1. Alternatively, one can think of the fol-

lowing noncooperative justification for this idea: the players are seating at

the negotiations table, where the agreement x ∈ S is up for consideration. If

xi ≥ min{s1i (S, d), · · · , sKi (S, d)} for each player i, then the candidate agree-

4EL(S, d) is well-defined for n = 2 but may fail to exist when n ≥ 3.
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ment x is robust in the following sense: if some player j complains that xj is

too low, then the other players can reject his complain on the basis that “sk is

a legitimate solution, and under x you receive a payoff which is greater than

the one you would have obtained under sk.”

Going back to our original concerns, this rationale leads me to consider the

following requirement: to demand that for each bargaining problem (S, d) each

player i will receive a payoff which is at least min{Ui(S, d), Ei(S, d), ELi(S, d)}.5

I say that such a solution satisfies restricted interpersonal comparisons.

For 2-person problems, a continuous scale-invariant solution exhibits this prop-

erty if and only if the following is true: for every problem (S, d), each player i

receives a payoff which is at least as large as min{Ni(S, d), KSi(S, d)}, where

N is the Nash bargaining solution and KS is the Kalai-Smorodinsky solution

(due to Kalai and Smorodinsky (1975)). Thus, this paper uncovers a nontrivial

link between the major IPA-solutions and the major IPFA-solutions. Based

on this link, I characterize the 2-person Nash solution.

The result does not extend to n ≥ 3. Restricted interpersonal comparisons

is not even well-defined in this case, because EL may not exist when n ≥ 3.6

Moreover, dropping EL from the axiom—i.e., demanding that each player i

receives at least min{Ui(S, d), Ei(S, d)}—results in an impossibility: no scale-

invariant n-person solution satisfies this requirement for n ≥ 3.

The rest of the paper is organized as follows. Section 2 lays down the

model; in particular, it emphasizes and explains the interpretation that each

5To be more precise, the requirement is that there exists a selection U from U such that

the above is satisfied. See subsection 2.1 for the formal definition.
6EL is guaranteed to exist if the feasible set is unbounded from below. In the current

paper, however, I allow the feasible sets to be compact (i.e., I do not insist on free disposal

of utilities), hence existence is an issue.
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problem corresponds to a potentially different set of bargainers. Section 3

contains the results.

2 Model

An n-person bargaining problem (a problem, for short) is a pair (S, d) such that

S ⊂ Rn is closed and convex, d ∈ S is such that Sd ≡ {x ∈ S|x ≥ d} is bounded

and contains a point x such that x > d, and S is d-comprehensive; that is, for

all x ∈ S: d ≤ y ≤ x⇒ y ∈ S. The collection of all these pairs (S, d) is denoted

Bn. A problem (S, d) is smooth if the Pareto frontier of its feasible set does not

contain segments; that is, if for distinct x, y ∈ P (S) and α ∈ (0, 1) the point

αx+ (1− α)y is not in P (S), where P (S) ≡ {x ∈ S|y ≥ x&y 6= x⇒ y /∈ S}.

A solution is any function µ : Bn → Rn that satisfies µ(S, d) ∈ S for all

(S, d) ∈ Bn. The Nash solution (due to Nash (1950)), N , is the unique max-

imizer of Πn
i=1(xi − di) over x ∈ Sd. The Kalai-Smorodinsky solution (due to

Kalai and Smorodinsky (1975)), KS, is given by (1−θ)d+θa(S, d), where θ is

the maximal number such that the aforementioned expression is in S, where

ai(S, d) ≡ max{xi|x ∈ Sd}.7 Let E and EL denote the egalitarian and equal-

loss solutions, respectively, and let U denote the utilitarian correspondence

(see Section 1 above for their definitions).8

The following axioms will be of interest in the sequel. In their definition,

(S, d) ∈ Bn is an arbitrary problem and {(Sk, d)}∞k=1 ⊂ Bn is an arbitrary

sequence of problems with a common disagreement point.

7The point a(S, d) is called the ideal point of the problem (S, d).
8Note that if (S, d) is a smooth problem then U(S, d) is a singleton; in this case, we can

unambiguously talk about the utilitarian solution to (S, d).
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Disagreement Convexity (D.VEX): µ(S, αd+ (1−α)µ(S, d)) = µ(S, d) for

all α ∈ (0, 1].

Midpoint Domination (MD): µ(S, d) ≥ 1
n

∑n
i=1(ai(S, d), d−i).

Scale Invariance (SINV): λ◦µ(S, d) = µ(λ◦S, λ◦d) for every positive affine

transformation λ : Rn → Rn.9

Continuity (CONT): If {Sk} converges to S in the Hausdorff metric, then

{µ(Sk, d)} converges to µ(S, d).

D.VEX says that a movement of the disagreement point in the direction of the

agreement should not change the agreement and MD says that the agreement

should dominate “randomized dictatorship.” These ideas are well-known and

throughly discussed in the literature.10

Now recall the varying-set-of-players interpretation: imagine that every

problem B = (S, d) corresponds to a potentially different set of players, I(B).

For every B and I(B), the axioms D.VEX and MD assume their standard

interpretations. SINV and CONT, however, are of a different nature, since

they refer to multiple problems: the former refers to all the positive affine

transformations of a given problem and the latter refers to a sequence of prob-

lems. Under the varying-set-of-players interpretation, therefore, they refer to

problems played by (possibly) different bargainers.

To illustrate the meaning of SINV under this interpretation of the model,

9A function λ : Rn → Rn is a positive affine transformation if λ ◦ (x1, · · · , xn) ≡

(λ1x1, · · · , λnxn) + t for some numbers λi > 0 and t ∈ R.
10See, e.g., Thomson (1994).
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and since the bulk of the paper considers the 2-person case, let us look at

the class of 2-person division problems : those (S, d) ∈ B2 for which d = (0, 0)

and S = {(y1, y2) ∈ R2
+|y ≤ (u1(x), u2(1 − x)), x ∈ [0, 1]}, where the ui’s are

concave increasing utility functions with ui(0) = 0, defined on the “pie” [0, 1].

Assuming that a player’s overall utility is quasi-linear, the functions ui denote

willingness to pay (for the pie). Given such a function ui, one obtains an entire

family {λui|λ > 0}, parametrized by the intensity parameter λ. Then, when

coupled with Pareto optimality,11 SINV simply says that your share of the pie

should be independent of the intensity of your opponent’s willingness to pay

for it. It therefore can be viewed as a principle of justice: you should not

take an unfair advantage of your partner just because he happens to have low

willingness to pay, and, similarly, he should not do it to you in the opposite

case.

A related interpretation, along similar lines, goes as follows. Suppose that

after bargaining has been completed, the players face an outside-of-bargaining

risk of losing their shares of the pie: player i loses what he got with probabil-

ity pi. The combination of SINV and Pareto optimality then says that player

i’s solution payoff should be independent of pj, which is an independence

principle—it restricts the extent to which outside-of-bargaining circumstances

can influence the bargaining outcome.

The interpretation of CONT is straightforward: if two groups of bargainers

are “similar,” then the agreements that they reach should also be.

11i.e., with the requirement (or axiom) that µ(S, d) ∈ P (S) for all (S, d).
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2.1 Useful results from the existing literature.

The following results, which are stated without their proofs, will be useful in

the sequel.

Proposition 1. (Rachmilevitch 2011a) Let µ be a solution on B2 that satisfies

SINV and CONT. Then, there exists a selection U from U such that µi(S, d) ≥

min{Ui(S, d), Ei(S, d)} for all (S, d) ∈ B2 and i ∈ {1, 2} if and only if µ = N .

Proposition 2. (Rachmilevitch 2011a) Let µ be a solution on Bn that sat-

isfies SINV. Then, there exists a selection U from U such that µi(S, d) ≥

min{Ui(S, d), Ei(S, d)} for all (S, d) ∈ Bn and 1 ≤ i ≤ n if and only if n = 2.

Proposition 3. (Rachmilevitch 2011b) Let µ be a solution on B2 that satisfies

SINV. Then µi(S, d) ≥ min{Ei(S, d), ELi(S, d)} for all (S, d) ∈ B2 and i ∈

{1, 2} if and only if µ = KS.

Proposition 4. (de Clippel 2007) N is the unique solution on B2 that satisfies

D.VEX and MD.12

3 The main result

Under interpersonal utility comparisons, the operations that were mentioned

in Section 1—equating gains, equating loses, and adding utilities of different

individuals—are all meaningful. When each problem B = (S, d) is considered

in “isolation,” for the set of players I(B), it seems mild to assume that this

problem, to begin with, is defined in a way that allows for such comparisons.

12de Clippel’s result is more general than that (it allows the solution to be multi-valued),

but for our purpose the aforementioned version will suffice.
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The fact that interpersonal utility comparisons give rise to different bargain-

ing solutions, each of which has its merits, but which are jointly inconsistent,

leads me to consider the following axiom. In its statement, as usual, (S, d) is

an arbitrary problem.

Restricted Interpersonal Comparisons (RIC): There exists a selection

U(S, d) ∈ U(S, d) such that

µi(S, d) ≥ min{Ui(S, d), Ei(S, d), ELi(S, d)} ∀i.

RIC can be viewed as a notion of insurance that incorporates utilitarianism,

egalitarianism, and the equal-loss principle: a lower bound on each player’s

payoff is obtained by considering, jointly, the three major IPA solutions.

Proposition 5. Let µ be solution on B2 that satisfies SINV and CONT.

Then µ satisfies RIC if and only if µi(S, d) ≥ min{Ni(S, d), KSi(S, d)} for

all (S, d) ∈ B2 and i ∈ {1, 2}.

Proof. Make the assumptions of the proposition. Assume first that µi(S, d) ≥

min{Ni(S, d), KSi(S, d)} for all (S, d) ∈ B2 and i ∈ {1, 2}. Then, in view of

Proposition 1 and Proposition 3, µ satisfies RIC. Conversely, suppose that it

satisfies RIC and let (S, d) ∈ B2. We need to show that for each player i the

following holds: µi(S, d) ≥ min{Ni(S, d), KSi(S, d)}.

By CONT we may assume that (S, d) is smooth. Let λ be the positive

affine transformation such that E(T, d′) = U(T, d′) = N(T, d′) ≡ x, where

T ≡ λ ◦ S and d′ ≡ λ ◦ d.13 Wlog, suppose that d = d′ = 0; let y ≡ KS(T,0)

and a ≡ a(T,0).

13The existence of this positive affine transformation λ was first established by Harsanyi

(1959). Shapley (1969) presents a related, and slightly more generally-formulated result.
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Suppose first that a1 = a2. In this case y = KS(T,0) = EL(T,0) =

E(T,0) = U(T,0) = N(T,0) = x, and since µ satisfies RIC, µ(T,0) ≥ x; since

x ∈ P (T ), µ(T,0) = x. By SINV, µ(S, d) = λ−1 ◦ x = N(S, d) = KS(S, d).

Suppose, on the other hand, that a1 6= a2; wlog, suppose that a2 > a1.

In this case, y is to the north west of x. Let z ≡ µ(T,0). By SINV, it is

enough to prove that zi ≥ min{Ni(T,0), KSi(T,0)} for both i ∈ {1, 2}. That

is, that z1 ≥ y1 and that z2 ≥ x2. The second inequality follows directly

from RIC, because EL(T,0) is to the north west of x (in fact, it is to the

north west of y).14 Assume by contradiction that z1 < y1. Let λ′ be the

positive affine transformation (A,B) 7→ (A, a1
a2
B) and let Q ≡ λ′ ◦ T . By

SINV, µ1(Q,0) = z1 < min{U1(Q,0), E1(Q,0), EL1(Q,0)}, in contradiction

to RIC.15

We can now turn to the main result.

Theorem 1. N is the unique solution on B2 that satisfies RIC, D.VEX, SINV,

and CONT.

Proof. It is well-known that N satisfies D.VEX, SINV, and CONT, and it

follows from Proposition 1 that it also satisfies RIC. Conversely, let µ be an

arbitrary solution on B2 that satisfies the four axioms. By Proposition 5, it

satisfies µi(S, d) ≥ min{Ni(S, d), KSi(S, d)} for all (S, d) ∈ B2 and i ∈ {1, 2}.

Therefore, since both N and KS satisfy MD, µ satisfies MD. By Proposition

4, the combination of MD and D.VEX implies µ = N .

14This argument implicitly relies on the smoothness of S. In its absence, we cannot

conclude that z2 ≥ x2, because the selection U in terms of which RIC is defined may select

a point to the south east of x.
15Note that λ′ ◦ y = EL(Q,0) = E(Q,0); the fact that the utilitarian solution must

weakly move to the right when λ′ is applied to T completes the proof.
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The axioms in Theorem 1 are independent. KS satisfies all of them besides

D.VEX, E satisfies all of them besides SINV, and the disagreement solution

µ(S, d) ≡ d satisfies all of them besides RIC. I now turn to describe a solution

that satisfies all the axioms but CONT.

Let Sx ≡ conv hull{(0, 0), (0, 1), (x, 1), (2x, 0)} and let Dx ≡ {β × (0, 0) +

(1− β)× (x, 1)|0 ≤ β ≤ 1} be the diagonal that connects the origin to (x, 1).

Define the following solution, µ∗, as follows. For (S, d) such that S = Sx and

d is to the left of Dx,16 let µ∗(S, d) = (x, 1). If (S, d) is such that there exists

a positive affine transformation λ such that (λ ◦ S, λ ◦ d) is a problem of the

kind that was described in the previous sentence, let µ∗(S, d) = λ−1 ◦ (x, 1).

For any other (S, d), set µ∗(S, d) = N(S, d). Clearly µ∗ satisfies D.VEX and

SINV. As for RIC, we only need to establish it for the case where S = Sx for

some x > 0 and d is to the left of Dx. If x < 1, then µ∗(S, d) is the unique

utilitarian point in Sd. If, on the other hand, x ≥ 1, then µ∗(S, d) is weakly

to the right of E(S, d).

For multi-person bargaining, i.e., for n ≥ 3, RIC must be amended, be-

cause EL may fail to exist in this case. The following strengthening of the

axiom then presents itself: there exists a selection U(S, d) ∈ U(S, d) such that

µi(S, d) ≥ min{Ui(S, d), Ei(S, d)} for all problems (S, d) and all players i. As

stated in Proposition 2, this strengthening results in an impossibility when

n ≥ 3. As we saw in Proposition 1, on the other hand, this stronger axiom,

when combined with SINV, pins down the Nash solution for n = 2.

Acknowledgments I am grateful to Ehud Kalai, Alan Miller, and Anna

Rubinchik for helpful comments.

16i.e., there is an z ∈ Dx with z1 ≥ d1.
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