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Abstract

We describe a simple 2-stage mechanism that induces two bargain-

ers to be truthful in reporting their reservation prices in a 1st stage.

If these prices criss-cross, the referee reports that they overlap, and

the bargainers proceed to make offers in a 2nd stage. The average

of the 2nd-stage offers becomes the settlement if both offers fall into

the overlap interval; if only one offer falls into this interval, it is the

settlement, but is implemented with probability 1
2 ; if neither offer falls

into the interval, there is no settlement. Thus, if the bargainers reach

the 2nd stage, they know their reservation prices overlap even if they

fail to reach a settlement, possibly motivating them to try again.
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1 Introduction

How to induce players to go to their “bottom lines” in bargaining is an

age-old problem in the design of a bargaining mechanism. A solution for

sealed-bid auctions is a second-price, or Vickrey, auction [7], whereby the

high bidder pays the second-highest bid, rendering what the winner pays

independent of what he or she bid. The extension of this idea to Vickrey-

Clarke-Groves (VCG) mechanisms [6] likewise induces honesty, because the

settlement does not depend directly on what either player offers. Similarly,

Brams and Kilgour [2] show that that when players bid for rooms in a house

in which they share the rent, the “gap procedure” creates a kind of partial

independence, motivating the housemates to make truthful bids that sum to

the total rent of the house.

When only two bargainers haggle over the price of some good or service,

then splitting the difference between their offers by averaging them does not

induce honesty, because the bargainers each have an incentive to exaggerate

in opposite directions. Indeed, Chatterjee and Samuelson [3] find a sim-

ple symmetric equilibrium in which exaggeration is piecewise linear in the

bargainers’ reservation prices—the settlement prices that would make each

indifferent between an agreement or none. In that game, the final price is

an average of the offers if they overlap (i.e., if the buyer’s offer does not

fall below the seller’s); otherwise, there is no agreement, and the players

get nothing. Myerson and Satterthwaite [5] prove that this simple mecha-

nism is more efficient than any other, and Leininger, Linhart, and Radner

[4] show that there is an infinity of asymmetric equilibria different from the

linear symmetric equilibrium of Chatterjee and Samuelson. For background

information on mechanism design, see [6].

In this paper, we give a two-stage mechanism that induces two bargainers
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truthfully to reveal their reservation prices to a referee in stage 1. If the

1st-stage offers overlap, there is the potential for an agreement, which is

realized—at the mean of the 2nd-stage offers—if both bargainers’ offers fall

in the overlap interval; if only one bargainer’s offer falls in this interval, this

offer becomes the agreement with probability 1
2
, but otherwise not; if neither

bargainer’s offer falls in the overlap interval, there is no agreement.

As we will show, this procedure, like another probabilistic mechanism [1]

that we discuss in section 5, is not as efficient as the one given by Chatterjee

and Samuelson, in part because of the random draw when exactly one offer

falls in the overlap interval. But even if no agreement is realized, our pro-

cedure does reveal—if it goes on to stage 2—that the reservation prices of

the bargainers allow for a mutually profitable agreement. Another benefit of

our mechanism is that there is a positive probability of settlement even for

extreme reservation values; in contrast, bargainers with extreme values have

no incentive to bargain under the Chatterjee-Samuelson procedure, because

there is no possibility of any agreement.

2 The Mechanism

We consider the possible sale of an object by a Seller to a Buyer. If they can

agree on a price p, the object will be transferred from Seller to Buyer, and

the Seller will receive p as compensation. Of course, Seller prefers a higher

p, whereas Buyer prefers a lower p. If they cannot agree on a p, there is no

sale.

For definiteness, we phrase our discussion in terms of a possible sale, but

we note that our mechanism has many applications, such as to the settlement

of a claim by an insured party against an insurer. In that case, the insured
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party, which prefers a higher settlement, plays the role of Seller, and the

insurer corresponds to the Buyer.

The Seller’s reservation price for the object, S, is the value of a random

variable with cumulative distribution function FS. The Buyer’s reservation

price, B, is the value of a random variable with cumulative distribution

function FB. Both FS and FB have support [C,D]. Both players’ reservation

prices are private information, and their utilities are quasi-linear, so that if

a sale takes place at price p, Buyer will receive B − p and Seller will receive

p−S. If there is no sale, both players receive 0. The players are risk-neutral.

The mechanism is a two-stage procedure:

Stage 1. The players submit reserves to the referee: Seller submits Ŝ and

Buyer submits B̂. The reserves may or may not equal the corresponding

reservation prices (i.e., the 1st-stage submissions are not necessarily truthful).

If Ŝ ≤ B̂, the overlap interval is [Ŝ, B̂], and the procedure moves to stage

2. If Ŝ > B̂, the reserves do not overlap, there is no settlement, and the

procedure ends.

Stage 2. The players submit offers to the referee: Seller submits s, and

Buyer submits b. If both s and b fall in the overlap interval defined in stage

1, there is a sale at price p = s+b
2
. If only one of s and b falls in the overlap

interval, the name of one player is selected at random; if the selected player’s

offer is the one in the overlap interval, then it is sale price; if not, there is no

sale. If neither offer is in the overlap interval, there is no sale.

This mechanism determines (i) whether there is a sale and (ii) if there is

a sale, at what price. As usual, we model each player as privately learning

its own (true) reservation price (S or B) prior to stage 1, and using this

information to choose its strategy: ((Ŝ, s) for Seller; (B̂, b) for Buyer). Thus,
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a strategy for Seller is a pair of functions Ŝ(S) and s(S) that give the values of

its strategic variables as a function of its reservation price. Similarly, Buyer’s

strategy can be thought of as two functions, B̂(B) and b(B). We assume

that all four of these strategy functions are differentiable and increasing in

the players’ reservation prices.

One strategy for a player weakly dominates another strategy for that

player if the first yields an expected utility that is at least as great as the

second, no matter what strategy is chosen by its opponent. A (Bayesian-

Nash) equilibrium is a profile of strategies with the property that, for each

player, the equilibrium strategy maximizes the player’s expected utility, given

that the opponent plays according to its equilibrium strategy.

To represent our mechanism, we use two functions,

t : R4 −→ [0, 1] and p : R4 −→ R

with the interpretation that t(Ŝ, s, B̂, b) is the probability that an agreement

is reached if the 1st-stage reserves are Ŝ and B̂, and the 2nd-stage offers are

s and b; similarly, p(Ŝ, s, B̂, b) is the price. Note that both Ŝ and s are

functions of Seller’s true reservation price S; we have written Ŝ instead of

Ŝ(S), and s instead of s(S), for notational simplicity. Observe that, if t = 0,

the value of p is irrelevant. Using the functions t and p, we can describe our

mechanism formally, as follows:

(t, p) =



(1, s+b
2
) if Ŝ ≤ s, b ≤ B̂,

(1
2
, b) if Ŝ ≤ b ≤ B̂ < s,

(1
2
, s) if b < Ŝ ≤ s ≤ B̂,

(0, 0) otherwise.

(1)

We will assume below that players always choose 2nd-stage strategies that
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are at least as “aggressive” as their 1st-stage strategies, i.e., that b ≤ B̂ and

s ≥ Ŝ. This assumption is innocuous because, by (1), the players’ payoffs

are certain to be 0 if it does not hold, while strategies satisfying b ≤ B̂ and

s ≥ Ŝ ensure a payoff of at least 0.

We can construct a strategically equivalent mechanism by retaining stage

1 and replacing stage 2 by

Stage 2′. One player, Seller or Buyer, is chosen at random. If Seller is

chosen, and if Seller’s 2nd-stage offer s satisfies s ≤ B̂, then the transaction

takes place at price p = s; if s > B̂, then there is no sale. Similarly, if the

player chosen is Buyer, and if Buyer’s 2nd-stage offer b satisfies Ŝ ≤ b, then

the transaction takes place at price p = b; if b < Ŝ, there is no transaction.

We assume that the random selection of a player in stage 2′ is independent

of the players’ reservation prices. The equivalence of the two mechanisms

arises because, if stage 2′ is followed, the players’ expected utilities are exactly

as in (1). For example, if Ŝ ≤ s, b ≤ B̂, then Seller’s expected utility is

1

2
(s− S) +

1

2
(b− S) =

s+ b

2
− S = p− S,

where p is determined by the first condition of (1). A similar relation holds

for Buyer. The verification is immediate if the 2nd-stage offer of only one

player, or none, falls in the overlap interval. Below, we will use the stage 2

and stage 2′ formulations interchangeably.

3 A Simple Truth-Telling Mechanism

We define truth-telling as follows:

Definition 1 Seller’s strategy (Ŝ, s) is truth-telling if Ŝ(S) = S for all
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S ∈ [C,D]. Buyer’s strategy (B̂, b) is truth-telling if B̂(B) = B for all

B ∈ [C,D]. A strategy profile (Ŝ, s; B̂, b) is a truth-telling equilibrium if

it is an equilibrium and both players’ strategies are truth-telling.

Note that truth-telling refers to the players’ reserve strategies (1st stage), not

their offer strategies (2nd stage).

A cumulative distribution function for Buyer, FB(x) has a monotone haz-

ard rate iff d
dx

F ′
B(x)

1−FB(x)
≥ 0 for all x ∈ [C,D. Similarly, a cumulative distri-

bution function for Seller, FS(x) has a monotone hazard rate iff d
dx

F ′
S(x)

FS(x)
≤ 0

for all x ∈ [C,D]. If both Buyer’s and Seller’s distributions satisfy a mono-

tone hazard rate condition, our procedure has a truth-telling equilibrium, as

shown next.

Proposition 1 Any strategy of Seller, (Ŝ, s), is weakly dominated by the

truth-telling strategy (S, s). Any strategy of Buyer, (B̂, b), is weakly domi-

nated by the truth-telling strategy (B, b). If FS(·) and FB(·) are strictly in-

creasing and satisfy a monotone hazard rate condition, then there is a truth-

telling equilibrium in which the players’ 2nd-stage offers, s∗ and b∗ are the

solutions of 1−FB(s) = (s−S)F ′
B(s) and FS(b) = (B−b)F ′

S(b), respectively.

Moreover, there are no truth-telling equilibria other than (S, s∗;B, b∗).

Proof. First we consider the Seller’s expected utility, which we calculate us-

ing the procedure of stage 2′. The Seller knows the value of S and determines

strategy (s, Ŝ) using the functions s(S) and Ŝ(S). The expectation must be

taken over the Buyer’s value B and the random selection of Seller or Buyer.

Therefore, Seller’s expected utility given S is

1

2

∫ D

b−1(Ŝ)

(b(B)− S) dFB(B) +
1

2

∫ D

B̂−1(s)

(s− S) dFB(B), (2)

where the first integral is associated with the random selection of Buyer (so

the price is b) and the second with the selection of Seller (so the price is
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s). The first integral must be restricted to values of B such that b(B) ≥ Ŝ,

which is equivalent to B ≥ b−1(Ŝ), as indicated in the lower limit. Similarly,

the second integral is restricted to those values of B for which s ≤ B̂(B), as

reflected in the lower limit.

Consider the information provided by (2) about Seller’s choice of strategy

functions. The first integral of (2) depends on Ŝ(S) but not s, and the

second integral of (2) depends on s(S) but not Ŝ. Therefore, Seller maximizes

its expected utility by choosing Ŝ to maximize the first integral and s to

maximize the second.

The first integral of (2) is

I1(Ŝ) =
1

2

∫ D

b−1(Ŝ)

(b(B)− S) dFB(B).

This integral depends on Ŝ only through its lower limit, so it can be differ-

entiated easily to produce

d

dŜ
I1(Ŝ) = −1

2

(
b(b−1(Ŝ))− S

)
FB

′(b−1(Ŝ))db
−1(Ŝ)

dŜ

= −1
2

(
Ŝ − S

)
FB

′(b−1(Ŝ))db
−1(Ŝ)

dŜ

Now FB
′(b−1(Ŝ)) can be assumed positive, as FB(·) is strictly increasing,

and b−1(·) is an increasing function because b(·) is. It follows that I1(Ŝ) is a

strictly increasing function of Ŝ if Ŝ < S and a strictly decreasing function

of Ŝ if Ŝ > S. Thus, for any 2nd-stage (offer) strategy s = s(S) of Seller,

it follows that Seller’s expected utility using strategy (Ŝ, s), where Ŝ ̸= S,

is not greater than Seller’s expected utility using strategy (S, s). Therefore,

we can conclude that any strategy for Seller is weakly dominated by a truth-

telling strategy, and that we can assume that Ŝ(S) = S at equilibrium. A

similar argument for Buyer leads to the conclusion that B̂(B) = B can be

assumed at equilibrium.
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Now we address Seller’s choice of s(S) to maximize the second integral of

(2). With the substitution B̂(B) = B, this integral becomes

I2(s) =
1

2

∫ D

s

(s− S) dFB(B).

We now differentiate with respect to s to produce

d

ds
I2(s) =

1
2

[
−(s− S)FB

′(s) +
∫ D

s
dFB(B)

]
= −1

2
[−(s− S)FB

′(s) + 1− FB(s)] .

Setting this derivative equal to zero and solving for s = s∗ produces the re-

quired condition, using the monotone hazard rate condition for FB(·). More-

over, the maximizing value s∗ is clearly unique. An analogous calculation, uti-

lizing the monotone hazard rate condition for FS(·), produces the condition

on b∗, and again shows that it is the unique maximizer. Thus, (S, s∗;B, b∗)

is the unique truth-telling equilibrium.

Our proof that (S, s∗;B, b∗) is an equilibrium thus relies on the fact that

non-truth-telling strategies are weakly dominated by truth-telling strategies,

so there must be a truth-telling equilibrium. Then the offer strategies are

obtained by maximizing the players’ expected utilities under the assumption

of truth-telling. To understand why truth-telling dominates, note that each

player benefits from maximizing the width of the overlap interval, up to

its reservation price—Seller from below and Buyer from above—in order to

ensure, insofar as possible, that the 2nd-stage bids, s and b, fall in the interval,

thereby meeting a necessary condition for an agreement.

In fact, truthfully reporting one’s reservation price in stage 1 is analogous

to bidding one’s reservation price in a Vickrey auction: Just as a player

cannot win in a Vickrey auction without being the highest bidder, a bargainer

cannot reach a settlement unless there is an overlap interval, leading to stage
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2. In each case, a player goes to its bottom line for two reasons: (i) failing to

do so in stage 1 could preclude a favorable outcome in stage 2 (or cause an

unfavorable outcome) and (ii) once in stage 2, the outcome does not depend

on what the player reported in stage 1.

A player’s utility, if positive, does not depend on the reserves, Ŝ and

B̂, submitted in stage 1 but, instead, on its bid, s or b, in stage 2. The

independence between a player’s reserve and its offer implies that it can

“afford” to be truthful in stage 1. In fact, a player cannot do worse by

reporting its reservation price truthfully in stage 1, and may do better, so

we say that under our mechanism each player has an incentive to report its

reservation prices truthfully.

The story is different, however, in stage 2: Each player will have an in-

centive to shade its offer, depending the distribution of the opponent’s reser-

vation price. In the next section, we illustrate, for two particular distribution

functions, how much shading is optimal.

4 Examples

For our examples, we assume C = 0 and D = 1, so that 0 ≤ S,B ≤ 1.

Example 1 Uniform distribution: FS(x) = FL(x) = x.

The players’ optimal offers, s∗(S) = 1+S
2

and b∗(B) = B
2
, are shown in Figure

1 below. Notice that each of these strategies halves the distance between the

reservation prices, S and B (shown as the line S = B) and the endpoints, 1

and 0 respectively, of the bargaining range. In particular, Seller never offers

below 1
2
, and Buyer never offers above 1

2
.

Notice from Figure 1 that if Seller’s (true) reservation price is, for exam-

ple, S = 3
4
, then Seller’s 2nd-stage bid will be s = s∗(3

4
) = 7

8
at equilibrium,
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S  B,

s* S b* B( ), ( )

s* S S( ) = (1 + )/2

S B=
b* B B( ) = /2

Figure 1: Offer Strategies: Example 1

and there will be a sale with probability 1
2
if B > 7

8
; otherwise, there is no

possibility of a sale. Hence, in the 1st-stage, Seller will be indifferent between

reporting 3
4
and, say, 5

8
(provided the 2nd-stage bid remains s = 7

8
). Thus,

truthful reporting is weakly but not strictly dominant in the 1st stage.

Figure 2 graphs the results of the equilibrium strategies we have identified

for all possible values of S and B. A sale occurs with certainty when B < 2S

and B > 1+S
2
; these two conditions define the region with darker shading in

Figure 2. Notice that this is the region of small values of S and large values

of B; the difference between S and B is so great that the offers s∗ and b∗

fall in the overlap interval. A transaction occurs with probability 1
2
when

2S < B < 1+S
2

and when 1+S
2

< B < min{2S, 1}, which are the two regions

with lighter shading in Figure 2.
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In the first of these regions (lower left), s∗ > B but b∗ > S, so there is a

sale at p = b∗ when Buyer’s name is drawn in stage 2′, and no sale otherwise.

Similarly, in the upper right region, s∗ < B and b∗ < S, so there is a sale at

p = s∗ when Seller’s name is drawn in stage 2′, and no sale otherwise.

S

B

B S=

B S= 2

B S= (1 + )/2

B S= + 1/4

Figure 2: Conditions for a Sale: Example 1

It is instructive to compare our mechanism with the Chatterjee-Samuelson

procedure [3]. The Chatterjee-Samuelson procedure produces a transaction,

for certain, if and only if B ≥ S + 1
4
, which is the area above the dashed

line in Figure 2. To compare mechanisms, we use the expected surplus they

produce, which because of our assumptions equals the total expected utility

of Buyer and Seller after the transaction, if any. For an “ideal” procedure,

which produces a settlement whenever the players’ reservation prices overlap,

the total surplus is ∫ 1

0

∫ 1

S

(B − S) dSdB =
1

6
.
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Myerson and Satterthwaite [5] demonstrated that no mechanism can produce

a larger surplus than the Chatterjee-Samuelson procedure, which gives∫ 3
4

0

∫ 1

S+ 1
4

(B − S) dBdS =
9

64
.

The surplus from our mechanism is

1

2

∫ 1

0

∫ 1

1+S
2

(B − S) dBdS +
1

2

∫ 1
2

0

∫ 1

2S

(B − S) dBdS =
1

8
,

which is 8
9
= 88.9% of the maximally possible surplus.

But there are other ways to compare mechanisms. One positive feature

of ours is the potential for trade at all possible values of S and all possible

values of B. The Chatterjee-Samuelson procedure does not share this feature.

For instance, if S = 0.8 and B ≥ 0.9, a sale occurs with probability 0.5

under our mechanism, but the Chatterjee-Samuelson mechanism rules out

any possibility of a transaction.

Example 2 Power distribution: FS(x) = xα, FB(x) = 1 − (1 − x)β, for

α, β > 0.

(It is easy to verify that these distributions satisfy the monotone hazard rate

conditions.) Buyer’s optimal offer is b∗ = αB
1+α

and Seller’s is s∗ = 1+βS
1+β

, in

agreement with Example 1, which corresponds to α = β = 1. For example,

when α = β = 2, b∗(B) = 2
3
B and s∗(S) = 1

3
+ 2

3
S, and when α = β = 1

2
,

b∗(B) = 1
3
B and s∗(S) = 2

3
+ 1

3
S.

5 Conclusion

We have demonstrated a simple and elegant 2-stage mechanism that induces

two bargainers to be truthful in reporting their reservation prices in the 1st
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stage; if these prices criss-cross, the referee reports that there is an overlap

interval, and the bargainers make offers in a 2nd stage. The mean of these

offers becomes the settlement if they both fall in the overlap interval. If only

one offer does, it is implemented as the settlement price with probability 1
2
,

whereas if neither offer does, there is no settlement.

Our mechanism is less efficient than the Chatterjee-Samuelson mecha-

nism, but does have several features to recommend it, including the possibil-

ity of a transaction even for extreme reservation prices. Also, the truth-telling

equilibrium we found is unique.

Part of the inefficiency of our mechanism stems from the random imple-

mentation of a 2nd-stage offer, s or b, as the exchange price when only one

offer falls in the overlap interval. Randomizing the implementation of a single

inside offer is the penalty one pays to render a player’s reserve independent

of its offer in the expected-payoff calculation, thereby making it optimal for

the player to report truthfully its reservation price. This independence would

be broken, and it would be suboptimal for a player truthfully to report its

reservation price, if single inside offers were implemented with certainty.

Brams and Kilgour [1] analyze other mechanisms that induce two bar-

gainers to be truthful, including a “bonus procedure” in which a third party

induces the bargainers to be truthful by paying them a bonus when their bids

criss-cross. But it is their “penalty procedure” that is closest to the present

mechanism in inducing truth-telling behavior.

Under it, the bargainers make simultaneous offers in a single stage, with

the proviso that the probability of implementation of a settlement is a func-

tion of the degree of overlap, if any, in the bids: the greater the overlap, the

higher this probability.1 It yields a surplus of 1
12
, which is 50% of the max-

1The probability of a certain settlement in the present mechanism increases as the
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imum possible surplus, so falls short of the 88.9% achieved by the present

mechanism. And, unlike the present mechanism, the players never learn

whether their failure to settle was because (i) their reservation prices did not

criss-cross (as in stage 1), or (ii) they did criss-cross but probabilistic imple-

mentation prevented a settlement (as in stage 2). In principle, however, they

could be told whether (i) or (ii) prevented a settlement; if (ii), they might

be motivated to try again (as discussed below).

An advantage of the present mechanism is that the players always learn

if stage 2 is reached and, therefore, that there is an overlap interval and the

potential for a mutually profitable settlement. While our mechanism does

not reveal the amount of regret—for example, by close the 2nd-stage offers are

to the overlap interval—we see no reason why the values of Ŝ = S, B̂ = B, s,

and b could not be revealed by the referee, making public the reason why

implementation failed in stage 2.

If the optimality of shading one’s “bottom line” in stage 2 is the reason

that a settlement eluded the players, this outcome might motivate them,

or a third party, to try to find a settlement—though, of course, under our

model the players must assign probability 0 to this eventuality during the

bargaining. But would they in good conscience walk away from the possibility

of a mutually profitable settlement that they know exists? While failure is

final in the model, perhaps in reality the bargainers would have good reason

to jettison the conclusion of the mechanism and try again.2

overlap of the stage 1 reserves increases, because a greater overlap increases the likelihood

that both players’ stage 2 offers will fall into the overlap interval, ensuring a settlement.
2One possible solution would be to force a settlement at the mean of the reservation

prices if there is an overlap interval but no settlement in stage 2. But this is a different

mechanism, and truth-telling would not be optimal for the players in stage 1. Moreover,

our demonstration above that the optimal 2nd-stage offers are the form s = 1+Ŝ
2 and
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